Memory-Aware DAG Scheduling

Grégoire Pichon, Bora Uçar & Frédéric Vivien (Original slides by Loris Marchal)

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: January 2023 https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Minimize Memory for Trees

- 2 Minimize Memory for Series-Parallel Graphs
- Sinimize I/Os for Trees under Bounded Memory
- Ocomplexity and Space-Time Tradeoffs for Parallel Tree Processing

- Parallel Processing of DAGs with Limited Memory
 - Model and maximum parallel memory
 - Maximum parallel memory/maximal topological cut
 - Efficient scheduling with bounded memory
 - Heuristics and simulations

Introduction

- Directed Acyclic Graphs: express task dependences
 - nodes: computational tasks
 - edges: dependences
 (data = output of a task = input of another task)

- Formalism proposed long ago in scheduling
- Back into fashion thanks to task based runtimes

Introduction

- Directed Acyclic Graphs: express task dependences
 - nodes: computational tasks
 - edges: dependences
 (data = output of a task = input of another task)
- Formalism proposed long ago in scheduling
- Back into fashion thanks to task based runtimes
- Decompose an application (scientific computations) into tasks
- Data produced/used by tasks create dependences
- Task mapping and scheduling done at runtime
- Numerous projects:
 - StarPU (Inria Bordeaux) several codes for each task to execute on any computing resource (CPU, GPU, *PU)
 - DAGUE, ParSEC (ICL, Tennessee) task graph expressed in symbolic compact form, dedicated to linear algebra
 - StartSs (Barcelona), Xkaapi (Grenoble), and others...
 - Now included in OpenMP API

• Consider a simple task graph

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

- Consider a simple task graph
- Tasks have durations and memory demands

イロト 不得 トイヨト イヨト

3

- Consider a simple task graph
- Tasks have durations and memory demands

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Consider a simple task graph
- Tasks have durations and memory demands

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Peak memory: maximum memory usage

- Consider a simple task graph
- Tasks have durations and memory demands

- Peak memory: maximum memory usage
- Trade-off between peak memory and performance (time to solution)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory

< ロ > < 同 > < 回 > < 回 >

Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory

イロト イヨト イヨト

Going back to sequential processing

- Temporary data require memory
- Scheduling influences the peak memory

When minimum memory demand > available memory:

- Store some temporary data on a larger, slower storage (disk)
- Out-of-core computing, with Input/Output operations (I/O)
- Decide both scheduling and eviction scheme

Several interesting questions:

- For sequential processing:
 - Minimum memory needed to process a graph
 - In case of memory shortage, minimum I/Os required

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Several interesting questions:

- For sequential processing:
 - Minimum memory needed to process a graph
 - In case of memory shortage, minimum I/Os required

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- In case of parallel processing:
 - Tradeoffs between memory and time (makespan)
 - Makespan minimization under bounded memory

Several interesting questions:

- For sequential processing:
 - Minimum memory needed to process a graph
 - In case of memory shortage, minimum I/Os required
- In case of parallel processing:
 - Tradeoffs between memory and time (makespan)
 - Makespan minimization under bounded memory

Most (all?) of these problems: NP-hard on general graphs 😕

Several interesting questions:

- For sequential processing:
 - Minimum memory needed to process a graph
 - In case of memory shortage, minimum I/Os required
- In case of parallel processing:
 - Tradeoffs between memory and time (makespan)
 - Makespan minimization under bounded memory

Most (all?) of these problems: NP-hard on general graphs 😕

Sometimes restrict to simpler graphs:

- Trees (single output, multiple inputs for each task) Arise in sparse linear algebra (sparse direct solvers), with large data to handle: memory is a problem
- Series-Parallel graphs Natural generalization of trees, close to actual structure of regular codes

Outline

Minimize Memory for Trees

- 2 Minimize Memory for Series-Parallel Graphs
- Sinimize I/Os for Trees under Bounded Memory
- Ocomplexity and Space-Time Tradeoffs for Parallel Tree Processing

- Parallel Processing of DAGs with Limited Memory
 - Model and maximum parallel memory
 - Maximum parallel memory/maximal topological cut
 - Efficient scheduling with bounded memory
 - Heuristics and simulations

Outline

Minimize Memory for Trees

- 2 Minimize Memory for Series-Parallel Graphs
- 3 Minimize I/Os for Trees under Bounded Memory
- 4 Complexity and Space-Time Tradeoffs for Parallel Tree Processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Parallel Processing of DAGs with Limited Memory

- Model and maximum parallel memory
- Maximum parallel memory/maximal topological cut
- Efficient scheduling with bounded memory
- Heuristics and simulations

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

• Memory for node *i*: $MemReq(i) = \left(\sum_{i \in Children(i)} f_i\right) + n_i + f_i$

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

• Memory for node *i*: $MemReq(i) = \left(\sum_{i \in Children(i)} f_i\right) + n_i + f_i$

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

• Memory for node *i*: $MemReq(i) = \left(\sum_{i \in Children(i)} f_i\right) + n_i + f_i$

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

• Memory for node *i*: $MemReq(i) = \left(\sum_{i \in Children(i)} f_i\right) + n_i + f_i$

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
 - Input data of leaf nodes have null size

• Memory for node *i*: $MemReq(i) = \left(\sum_{i \in Children(i)} f_i\right) + n_i + f_i$

- In-tree of n nodes
- Output data of size f_i
- Execution data of size n_i
- Input data of leaf nodes have null size

• Memory for node *i*: $MemReq(i) = \left(\sum_{i \in Children(i)} f_i\right) + n_i + f_i$

Post-Order: entirely process one subtree after the other (DFS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• For each subtree T_i : peak memory P_i , residual memory f_i

• For a given processing order 1, ..., n, the peak memory is:

 $\max\{P_1,$

Post-Order: entirely process one subtree after the other (DFS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For each subtree T_i: peak memory P_i, residual memory f_i
For a given processing order 1,..., n, the peak memory is:

 $\max\{P_1, f_1 + P_2,$

Post-Order: entirely process one subtree after the other (DFS)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For each subtree T_i: peak memory P_i, residual memory f_i
For a given processing order 1,..., n, the peak memory is:

 $\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3,$

Post-Order: entirely process one subtree after the other (DFS)

(日) (四) (日) (日) (日)

For each subtree T_i: peak memory P_i, residual memory f_i
For a given processing order 1,..., n, the peak memory is:

Post-Order: entirely process one subtree after the other (DFS)

For each subtree T_i: peak memory P_i, residual memory f_i
For a given processing order 1,..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum f_i + n_r + f_r\}$$

(日) (四) (日) (日) (日)

Post-Order: entirely process one subtree after the other (DFS)

For each subtree T_i: peak memory P_i, residual memory f_i
For a given processing order 1,..., n, the peak memory is:

$$\max\{P_1, f_1 + P_2, f_1 + f_2 + P_3, \dots, \sum_{i < n} f_i + P_n, \sum_{i < n} f_i + n_r + f_r\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Optimal order: non-increasing $P_i - f_i$

Proof for best Post-Order

Theorem (Best Post-Order)

The best Post-Order traversal is obtained by processing subtrees in non-increasing order $P_i - f_i$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Best Post-Order)

The best Post-Order traversal is obtained by processing subtrees in non-increasing order $P_i - f_i$.

Proof:

- Consider an optimal traversal which does not respect the order:
 - subtree j is processed right before subtree k
 - $P_k f_k \ge P_j f_j$

	peak when <i>j</i> , then <i>k</i>	peak when <i>k</i> , then <i>j</i>
during first subtree	$mem_{-}before + P_{j}$	$mem_{-}before + P_k$
during second subtree	$mem_before + f_j + P_k$	$mem_before + f_k + P_j$

•
$$f_k + P_j \leq f_j + P_k$$

• Transform the schedule step by step without increasing the memory.

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

• Minimum post-order peak memory:

(日) (四) (日) (日) (日)

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

• Minimum post-order peak memory: $M_{\min} = M + \epsilon + (b-1)M/b$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

• Minimum post-order peak memory: $M_{\min} = M + \epsilon + (b-1)M/b$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Minimum peak memory:

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

• Minimum post-order peak memory: $M_{\min} = M + \epsilon + (b-1)M/b$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Minimum peak memory: $M_{\min} = M + \epsilon + (b-1)\epsilon$

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

• Minimum post-order peak memory: $M_{\min} = M + \epsilon + (b-1)M/b+?$

・日本 ・ 国本 ・ 国本 ・ 日本

• Minimum peak memory: $M_{\min} = M + \epsilon + (b-1)\epsilon + ?$

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a k-approximation.

- Minimum post-order peak memory: $M_{\min} = M + \epsilon + 2(b-1)M/b$
- Minimum peak memory: $M_{\min} = M + \epsilon + 2(b-1)\epsilon$

	actual assembly trees	random trees
Non optimal traversals	4.2%	61%
Maximum increase compared to optimal	18%	22%
Average increased compared to optimal	1%	12%

Liu's optimal traversal – sketch

- Recursive algorithm: at each step, merge the optimal ordering of each subtree (sequence)
- Sequence: divided into segments:
 - *H*₁: maximum over the whole sequence (hill)
 - V_1 : minimum after H_1 (valley)
 - H_2 : maximum after H_1
 - V₂: minimum after H₂
 - . . .
 - The valleys V_i 's are the boundaries of the segments
- Combine the sequences by non-increasing H V
- Complex proof based on a partial order on the cost-sequences: $(H_1, V_1, H_2, V_2, \ldots, H_r, V_r) \prec (H'_1, V'_1, H'_2, V'_2, \ldots, H'_{r'}, V'_{r'})$ if for each $1 \leq i \leq r$, there exists $1 \leq j \leq r'$ with $H_i \leq H'_j$ and $V_i \leq V'_j$.

(日)(1)</

Outline

Minimize Memory for Trees

2 Minimize Memory for Series-Parallel Graphs

3 Minimize I/Os for Trees under Bounded Memory

4 Complexity and Space-Time Tradeoffs for Parallel Tree Processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Parallel Processing of DAGs with Limited Memory

- Model and maximum parallel memory
- Maximum parallel memory/maximal topological cut
- Efficient scheduling with bounded memory
- Heuristics and simulations

- Not all scientific workflows are trees
- But most workflows exhibit some regularity
- Large class of workflows: Series-Parallel graphs

- Not all scientific workflows are trees
- But most workflows exhibit some regularity
- Large class of workflows: Series-Parallel graphs

(日) (四) (日) (日) (日)

- Not all scientific workflows are trees
- But most workflows exhibit some regularity
- Large class of workflows: Series-Parallel graphs

(日) (四) (日) (日) (日)

- Not all scientific workflows are trees
- But most workflows exhibit some regularity
- Large class of workflows: Series-Parallel graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Select edges with minimal weight on each branch: $e_1^{\min}, \ldots, e_B^{\min}$

Select edges with minimal weight on each branch: $e_1^{\min}, \ldots, e_B^{\min}$

Theorem

There exists a schedule with minimal memory which synchronises at $e_1^{\min}, \ldots, e_B^{\min}$.

Select edges with minimal weight on each branch: $e_1^{\min}, \ldots, e_B^{\min}$

Theorem

There exists a schedule with minimal memory which synchronises at $e_1^{\min}, \ldots, e_B^{\min}$.

Sketch of an optimal algorithm:

- Apply optimal algorithm for out-trees on the left part
- Apply optimal algorithm for in-trees on the right part

• Consider optimal schedule σ_1

- Transform it into σ_2 :
 - **D** Schedule all nodes from *S* (following σ_1)
 - 2 Then, schedule all nodes from T
- New schedule respect precedence constraints (processing order not changed within each branch)
- After scheduling all vertices from S, all e_i^{min} in memory
- Consider the memory when processing $u \in S$ from branch *i*:

- Consider optimal schedule σ_1
- Transform it into σ_2 :
 - **1** Schedule all nodes from *S* (following σ_1)
 - 2 Then, schedule all nodes from T
- New schedule respect precedence constraints (processing order not changed within each branch)
- After scheduling all vertices from S, all e^{min} in memory
- Consider the memory when processing $u \in S$ from branch *i*:

- Consider optimal schedule σ_1
- Transform it into σ_2 :
 - **1** Schedule all nodes from *S* (following σ_1)
 - 2 Then, schedule all nodes from T
- New schedule respect precedence constraints (processing order not changed within each branch)
- After scheduling all vertices from *S*, all *e*^{min} in memory
- Consider the memory when processing $u \in S$ from branch *i*:

- Consider optimal schedule σ_1
- Transform it into σ_2 :
 - **1** Schedule all nodes from *S* (following σ_1)
 - 2 Then, schedule all nodes from T
- New schedule respect precedence constraints (processing order not changed within each branch)
- After scheduling all vertices from S, all e_i^{\min} in memory
- Consider the memory when processing $u \in S$ from branch *i*:

- Consider optimal schedule σ_1
- Transform it into σ_2 :
 - **1** Schedule all nodes from *S* (following σ_1)
 - 2 Then, schedule all nodes from T
- New schedule respect precedence constraints (processing order not changed within each branch)
- After scheduling all vertices from S, all e_i^{\min} in memory
- Consider the memory when processing $u \in S$ from branch *i*:

	in σ_1	in σ_2
edge from branch $j \neq i$	some edge (v, w)	$egin{array}{ccc} (v,w) & ext{if } v \in S \ e_j^{\min} & ext{otherwise} \end{array}$

Memory needed when processing u not larger in σ_2

• Same analysis if $u \in T$

- Consider optimal schedule σ_1
- Transform it into σ_2 :
 - **1** Schedule all nodes from *S* (following σ_1)
 - 2 Then, schedule all nodes from T
- New schedule respect precedence constraints (processing order not changed within each branch)
- After scheduling all vertices from S, all e_i^{\min} in memory
- Consider the memory when processing $u \in S$ from branch *i*:

• Same analysis if $u \in T$

- Consider optimal schedule σ_1
- Transform it into σ_2 :
 - **1** Schedule all nodes from *S* (following σ_1)
 - 2 Then, schedule all nodes from T
- New schedule respect precedence constraints (processing order not changed within each branch)
- After scheduling all vertices from S, all e_i^{\min} in memory
- Consider the memory when processing $u \in S$ from branch *i*:

• Same analysis if $u \in T$

Given a schedule σ₁ with memory M for the left in-tree, derive a schedule σ₂ for the right out-tree

(日) (四) (日) (日) (日)

 Given a schedule σ₁ with memory M for the left in-tree, derive a schedule σ₂ for the right out-tree: obtained by reversing all edges

(日) (四) (日) (日) (日)

 Given a schedule σ₁ with memory M for the left in-tree, derive a schedule σ₂ for the right out-tree: obtained by reversing all edges

 Given a schedule σ₁ with memory M for the left in-tree, derive a schedule σ₂ for the right out-tree: obtained by reversing all edges

(日) (四) (日) (日) (日)

 Given a schedule σ₁ with memory M for the left in-tree, derive a schedule σ₂ for the right out-tree: obtained by reversing all edges

 Given a schedule σ₁ with memory M for the left in-tree, derive a schedule σ₂ for the right out-tree: obtained by reversing all edges

(日) (四) (日) (日) (日)

 Given a schedule σ₁ with memory M for the left in-tree, derive a schedule σ₂ for the right out-tree: obtained by reversing all edges

- Given a schedule σ₁ with memory M for the left in-tree, derive a schedule σ₂ for the right out-tree: obtained by reversing all edges
- Choose $\sigma_2 = \text{reverse}(\sigma_1)$

General Series-Parallel Graphs

Principle:

- Follow the recursive definition of the SP-graph
- Compute both optimal schedule and minimal cut
- Replace subgraphs by chains of nodes (based on opt. sched.)

For sequential composition:

- Select minimal cut
- Concatenate schedules

For parallel composition (as for Parallel-Chains):

- Merge cuts
- On the left part, use algo. for out-trees for merging schedules

• On the right, use algo. for in-trees for merging schedules

Simple algorithm vs. very complex proof of optimality

General Series-Parallel Graphs

Principle:

- Follow the recursive definition of the SP-graph
- Compute both optimal schedule and minimal cut
- Replace subgraphs by chains of nodes (based on opt. sched.)

For sequential composition:

- Select minimal cut
- Concatenate schedules

For parallel composition (as for Parallel-Chains):

- Merge cuts
- On the left part, use algo. for out-trees for merging schedules

• On the right, use algo. for in-trees for merging schedules

Simple algorithm vs. very complex proof of optimality

General Series-Parallel Graphs

Principle:

- Follow the recursive definition of the SP-graph
- Compute both optimal schedule and minimal cut
- Replace subgraphs by chains of nodes (based on opt. sched.)

For sequential composition:

- Select minimal cut
- Concatenate schedules

For parallel composition (as for Parallel-Chains):

- Merge cuts
- On the left part, use algo. for out-trees for merging schedules

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• On the right, use algo. for in-trees for merging schedules

Simple algorithm vs. very complex proof of optimality

Outline

Minimize Memory for Trees

Minimize Memory for Series-Parallel Graphs

3 Minimize I/Os for Trees under Bounded Memory

4 Complexity and Space-Time Tradeoffs for Parallel Tree Processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

5 Parallel Processing of DAGs with Limited Memory

- Model and maximum parallel memory
- Maximum parallel memory/maximal topological cut
- Efficient scheduling with bounded memory
- Heuristics and simulations

Minimizing I/Os for Trees

Problem:

- Available memory *M* too small to compute the whole tree
- Some data needs to be written to disk, and read back later
- Objective: minimize the amount of I/Os (total volume)

Theorem

When data must either be kept in memory or fully evicted to disk, deciding which data to write to disk is NP-complete.

Reduction from Partition:

- Integers $a_1, \ldots a_n, S = \sum_i a_i$
- Split in two subsets of sum S/2

Memory M = 2SIs it possible to schedule the tree with a volume of I/O at most S/2?

With paging:

- Partial data may be written to disk
- I/O cost metric: volume of data written to disk

Simpler model of memory/computation:

- memory weight only on edges output of $i = w_i$
- When processing a node, max(input, output) is needed
- Can easily emulate previous model (on the board)

Memory: 0 / 5

Disk: 0

I/Os: 0

With paging:

- Partial data may be written to disk
- I/O cost metric: volume of data written to disk

Simpler model of memory/computation:

- memory weight only on edges output of $i = w_i$
- When processing a node, max(input, output) is needed
- Can easily emulate previous model (on the board)

Memory: 3 / 5

Disk: 0

I/Os: 0

With paging:

- Partial data may be written to disk
- I/O cost metric: volume of data written to disk

Simpler model of memory/computation:

- memory weight only on edges output of $i = w_i$
- When processing a node, max(input, output) is needed
- Can easily emulate previous model (on the board)

Memory: 4 / 5

Disk: 0

I/Os: 0

With paging:

- Partial data may be written to disk
- I/O cost metric: volume of data written to disk

Simpler model of memory/computation:

- memory weight only on edges output of $i = w_i$
- When processing a node, max(input, output) is needed
- Can easily emulate previous model (on the board)

Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- I/O cost metric: volume of data written to disk

Simpler model of memory/computation:

- memory weight only on edges output of $i = w_i$
- When processing a node, max(input, output) is needed
- Can easily emulate previous model (on the board)

Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- I/O cost metric: volume of data written to disk

Simpler model of memory/computation:

- memory weight only on edges output of $i = w_i$
- When processing a node, max(input, output) is needed
- Can easily emulate previous model (on the board)

Memory: 5 / 5

Disk: 0

I/Os: 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Minimizing I/O for Trees – with Paging

With paging:

- Partial data may be written to disk
- I/O cost metric: volume of data written to disk

Simpler model of memory/computation:

- memory weight only on edges output of $i = w_i$
- When processing a node, max(input, output) is needed
- Can easily emulate previous model (on the board)

Memory: 4 / 5

Disk: 0

I/Os: 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Traversal

- Schedule σ : $\sigma(i) = t$ if task *i* is the *t*-th executed task
- I/O function τ : output data of task *i* has $\tau(i)$ slots written to disk
- W.I.o.g. data written to disk ASAP and read ALAP

Validity of a traversal

- Schedule respects precedences.
- I/Os consistent: $au(i) \leq w_i$
- The main memory (size M) is never exceeded, $\forall i \in V$:

$$\begin{pmatrix} \sum_{\substack{(k,p) \in S^{-1}\\ (k,p) \in S^{-1}\\ (n(k) \in O(D) = 0 \end{pmatrix}} (k,p) = 1 - max \begin{pmatrix} w_1, \sum_{\substack{(k,p) \in S^{-1}\\ (k,p) \in S^{-1}\\ (k,p) \in O(D) = 0 \end{pmatrix}} \leq M$$

Traversal

- Schedule σ : $\sigma(i) = t$ if task *i* is the *t*-th executed task
- I/O function τ : output data of task *i* has $\tau(i)$ slots written to disk
- W.I.o.g. data written to disk ASAP and read ALAP

Validity of a traversal

- Schedule respects precedences
- I/Os consistent: $au(i) \leq w$
- The main memory (size M) is never exceeded, $\forall i \in V$:

$$\left(\sum_{\substack{(k,p)\in E\\\sigma(k)<\sigma(i)<\sigma(p)}} (w_k - \tau(k))\right) + \max\left(w_i, \sum_{(j,i)\in E} w_j\right) \leq M$$

Traversal

- Schedule σ : $\sigma(i) = t$ if task *i* is the *t*-th executed task
- I/O function τ : output data of task *i* has $\tau(i)$ slots written to disk
- W.I.o.g. data written to disk ASAP and read ALAP

Validity of a traversal

- Schedule respects precedences
- I/Os consistent: $\tau(i) \leq w_i$
- The main memory (size M) is never exceeded, $\forall i \in V$:

$$\left(\sum_{\substack{(k,p)\in E\\\sigma(k)<\sigma(i)<\sigma(p)}} (w_k - \tau(k))\right) + \max\left(w_i, \sum_{(j,i)\in E} w_j\right) \leq M$$

Traversal

- Schedule σ : $\sigma(i) = t$ if task *i* is the *t*-th executed task
- I/O function τ : output data of task *i* has $\tau(i)$ slots written to disk
- W.I.o.g. data written to disk ASAP and read ALAP

Validity of a traversal

- Schedule respects precedences
- I/Os consistent: $\tau(i) \leq w_i$
- The main memory (size M) is never exceeded, $\forall i \in V$:

$$\left(\sum_{\substack{(k,p)\in E\\\sigma(k)<\sigma(i)<\sigma(p)}} (w_k-\tau(k))\right) + \max\left(w_i, \sum_{(j,i)\in E} w_j\right) \leq M$$

Traversal

- Schedule σ : $\sigma(i) = t$ if task *i* is the *t*-th executed task
- I/O function τ : output data of task *i* has $\tau(i)$ slots written to disk
- W.I.o.g. data written to disk ASAP and read ALAP

Validity of a traversal

- Schedule respects precedences
- I/Os consistent: $\tau(i) \leq w_i$
- The main memory (size M) is never exceeded, $\forall i \in V$:

$$\left(\sum_{\substack{(k,p)\in E\\\sigma(k)<\sigma(i)<\sigma(p)}} (w_k - \tau(k))\right) + \max\left(w_i, \sum_{(j,i)\in E} w_j\right) \leq M$$

Objective

The MINIO problem

Given a tree G and a memory limit M, find a valid traversal that minimizes the total amount of I/Os (that is, $\sum \tau(i)$).

An interesting subclass: postorder traversals

- Fully process a subtree before starting a new one
- Completely characterized by the execution order of subtrees
- Widely used in sparse matrix software (e.g., MUMPS, QR-MUMPS)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Preliminary results

Let (σ, τ) be an optimal traversal for MINIO of a given instance

Lemma (Schedule is enough)

Given σ : the Furthest In the Future I/O policy minimizes I/Os.

Lemma (I/O function is enough)

Given au: a valid traversal (σ', au) can be computed in polynomial time.

Proof.

Expand each node following:

・ロト ・ 同ト ・ ヨト ・ ヨト

Then minimize the memory peak.

Preliminary results

Let (σ, τ) be an optimal traversal for MINIO of a given instance

Lemma (Schedule is enough)

Given σ : the Furthest In the Future I/O policy minimizes I/Os.

Lemma (I/O function is enough)

Given τ : a valid traversal (σ', τ) can be computed in polynomial time.

Proof.

Expand each node following:

(日) (四) (日) (日) (日)

Then minimize the memory peak.

Preliminary results

Let (σ, τ) be an optimal traversal for MINIO of a given instance

Lemma (Schedule is enough)

Given σ : the Furthest In the Future I/O policy minimizes I/Os.

Lemma (I/O function is enough)

Given τ : a valid traversal (σ', τ) can be computed in polynomial time.

Proof.

Expand each node following:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Then minimize the memory peak.

• When executing T_i : order of execution of children of *i*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- When executing T_i : order of execution of children of i
- First compute the storage requirement of subtree T_i :

- When executing T_i : order of execution of children of i
- First compute the storage requirement of subtree T_i :

$$S_{i} = \max\left(w_{i}, \max_{j \in Chil(i)} \left(S_{j} + \sum_{\substack{k \in Chil(i)\\\sigma(k) < \sigma(j)}} w_{k}\right)\right)$$

- When executing T_i : order of execution of children of i
- First compute the storage requirement of subtree T_i :

$$S_{i} = \max\left(w_{i}, \max_{\substack{j \in Chil(i)\\\sigma(k) < \sigma(j)}} \left(S_{j} + \sum_{\substack{k \in Chil(i)\\\sigma(k) < \sigma(j)}} w_{k}\right)\right)$$

э

イロト 不得 トイヨト イヨト

• Memory really used: $A_i = \min(S_i, M)$

- When executing T_i : order of execution of children of *i*
- First compute the storage requirement of subtree T_i :

$$S_{i} = \max\left(w_{i}, \max_{j \in Chil(i)} \left(S_{j} + \sum_{\substack{k \in Chil(i)\\\sigma(k) < \sigma(j)}} w_{k}\right)\right)$$

- Memory really used: $A_i = \min(S_i, M)$
- For a given order σ , the volume of I/O is given by:

$$V_{i} = \max\left(0, \max_{j \in Chil(i)} \left(A_{j} + \sum_{\substack{k \in Chil(i)\\\sigma(k) < \sigma(j)}} w_{k}\right) - M\right) + \sum_{j \in Chil(i)} V_{j}$$

Best Postorder for Minimizing I/Os

For a given order σ , the volume of I/O is given by:

$$V_{i} = \max\left(0, \max_{j \in Chil(i)} \left(A_{j} + \sum_{\substack{k \in Chil(i)\\\sigma(k) < \sigma(j)}} w_{k}\right) - M\right) + \sum_{j \in Chil(i)} V_{j}$$

Theorem

Given a set of values (x_i, y_i) , the minimum of $\max(x_i + \sum_{j < i} y_j)$ is obtained by sorting the sequence by non-increasing $x_i - y_i$.

Corollary

The postorder traversal that minimizes I/Os sorts the subtrees by non-increasing $A_j - w_j$.

Minimizing I/Os for Homogeneous Trees

Theorem

Both POSTORDERMINMEM and POSTORDERMINIO minimize I/Os on homogeneous trees (unit sizes).

Note: **POSTORDERMINMEM** does not rely on *M* so is optimal for any memory size and several memory layers (cache-oblivious)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Minimizing I/Os for Homogeneous Trees

Theorem

Both POSTORDERMINMEM and POSTORDERMINIO minimize I/Os on homogeneous trees (unit sizes).

Note: POSTORDERMINMEM does not rely on M so is optimal for any memory size and several memory layers (cache-oblivious)

But $\operatorname{POStOrder}MinIO$ is not competitive on heterogeneous trees:

 \bullet Cases when $\operatorname{POSTORDERMINIO}$ needs I/O when optimal traversal does not

A D N A 目 N A E N A E N A B N A C N

• Even when the optimal traversal requires I/Os. . .

$\operatorname{POSTORDER}MINIO$ is not competitive

$\operatorname{POSTORDER}MINIO$ is not competitive

I/O optimal

• Peak memory: M + 1

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

• I/Os: 1

$\operatorname{POSTORDER}MINIO$ is not competitive

I/O optimal

- Peak memory: M + 1
- I/Os: 1

PostOrderMinIO

- Peak memory: $\frac{3}{2}M$
- I/Os: Θ(|V|M)

Competitive ratio: $\Omega(|V|M)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- PostOrder algorithms optimal for homogeneous trees
- No known competitive algorithms for heterogeneous trees

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Heterogeneous trees: still an open problem!

Outline

Minimize Memory for Trees

2 Minimize Memory for Series-Parallel Graphs

3 Minimize I/Os for Trees under Bounded Memory

Complexity and Space-Time Tradeoffs for Parallel Tree Processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Parallel Processing of DAGs with Limited Memory

Model for Parallel Tree Processing

- p uniform processors
- Shared memory of size M
- Task *i* has execution times *p_i*
- \bullet Parallel processing of nodes \Rightarrow larger memory
- Trade-off time vs. memory

NP-Completeness in the Pebble Game Model

Background:

- Makespan minimization NP-complete for trees $(P|trees|C_{max})$
- Polynomial when unit-weight tasks $(P|p_i = 1, trees|C_{max})$
- Pebble game polynomial on trees

Pebble game model:

- Unit execution time: $p_i = 1$
- Unit memory costs: n_i = 0, f_i = 1 (pebble edges, equivalent to pebble game for trees)

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at most C steps is NP-complete.

NP-Completeness - Proof

Reduction from 3-Partition:

- 3m integers a_i and B with $\sum a_i = mB$,
- find *m* subsets S_k of 3 elements with $\sum_{i \in S_k} a_i = B$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Schedule the tree using:

- p = 3mB processors,
- at most $B = 3m \times B + 3m$ pebbles,
- at most C = 2m + 1 steps.

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α -approximation for makespan minimization and a β -approximation for memory peak minimization when scheduling tree-shaped task graphs.

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α -approximation for makespan minimization and a β -approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan $C_{\max},$ $M imes C_{\max} \geq 2(n-1)$

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α -approximation for makespan minimization and a β -approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan $C_{\max},$ $M imes C_{\max} \geq 2(n-1)$

Proof: each edge stays in memory for at least 2 steps.

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α -approximation for makespan minimization and a β -approximation for memory peak minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan $C_{\max},$ $M imes C_{\max} \geq 2(n-1)$

Proof: each edge stays in memory for at least 2 steps.

Corollary: Lower Bound on Space-Time Product For a schedule with peak memory M and makespan C_{\max} , $M \times C_{\max} \ge \sum_{i} mem_needed_for_task_i \times p_i$

ヘロン 人間と 人間と 人間と

Space-Time Tradeoff – Proof

- With m^2 processors: $C^*_{max} = 3$
- With 1 processor, sequentialize the a_i subtrees: $M^* = 2m$
- By contradiction, approximating both objectives: $C_{\max} \leq 3\alpha$ and $M \leq 2m\beta$
- But $M \times C_{\max} \geq 2(n-1) = 2m^2 + 2m$
- $2m^2 + 2m \le 6m\alpha\beta$
- Contradiction for a sufficiently large value of m
- There does not exist any zenith-approximation algorithm

For task trees:

- Optimizing both makespan and memory is NP-Complete
 ⇒ Same for minimizing makespan under memory budget
- No scheduling algorithm can be a constant factor approximation on both memory and makespan

Outline

- Minimize Memory for Trees
- 2 Minimize Memory for Series-Parallel Graphs
- 3 Minimize I/Os for Trees under Bounded Memory
- 4 Complexity and Space-Time Tradeoffs for Parallel Tree Processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

5 Parallel Processing of DAGs with Limited Memory

Processing DAGs with Limited Memory

- Schedule general graphs
- On a shared-memory platform

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First option: design good static scheduler:

- NP-complete, non-approximable
- Cannot react to unpredicted changes in the platform or inaccuracies in task timings

Second option:

- Limit memory consumption of any dynamic scheduler Target: runtime systems
- Without impacting too much parallelism

Outline

Minimize Memory for Trees

- 2 Minimize Memory for Series-Parallel Graphs
- 3 Minimize I/Os for Trees under Bounded Memory

4 Complexity and Space-Time Tradeoffs for Parallel Tree Processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Parallel Processing of DAGs with Limited Memory Model and maximum parallel memory

- Maximum parallel memory/maximal topological cut
- Efficient scheduling with bounded memory
- Heuristics and simulations

Task graphs with:

• Vertex weights (*w_i*): task (estimated) durations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Edge weights $(m_{i,j})$: data sizes

Task graphs with:

- Vertex weights (*w_i*): task (estimated) durations
- Edge weights $(m_{i,j})$: data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Task graphs with:

- Vertex weights (*w_i*): task (estimated) durations
- Edge weights $(m_{i,j})$: data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

(日) (四) (日) (日) (日)

Task graphs with:

- Vertex weights (*w_i*): task (estimated) durations
- Edge weights $(m_{i,j})$: data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Task graphs with:

- Vertex weights (*w_i*): task (estimated) durations
- Edge weights $(m_{i,j})$: data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

(日) (四) (日) (日) (日)

Task graphs with:

- Vertex weights (*w_i*): task (estimated) durations
- Edge weights $(m_{i,j})$: data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Task graphs with:

- Vertex weights (*w_i*): task (estimated) durations
- Edge weights $(m_{i,j})$: data sizes

Simple memory model: at the beginning of a task

- Inputs are freed (instantaneously)
- Outputs are allocated

At the end of a task: outputs stay in memory

Emulation of other memory behaviours:

• Inputs + outputs allocated during task: duplicate nodes

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Outline

Minimize Memory for Trees

- 2 Minimize Memory for Series-Parallel Graphs
- 3 Minimize I/Os for Trees under Bounded Memory

4 Complexity and Space-Time Tradeoffs for Parallel Tree Processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

6 Parallel Processing of DAGs with Limited Memory

- Model and maximum parallel memory
- Maximum parallel memory/maximal topological cut
- Efficient scheduling with bounded memory
- Heuristics and simulations

Computing the maximum memory peak

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

• What is the maximum memory of any parallel execution?

Computing the maximum memory peak

Topological cut: (S, T) with:

- S include the source node, T include the target node
- No edge from T to S
- Weight of the cut = weight of all edges from S to T

Any topological cut corresponds to a possible state when all node in S are completed or being processed.

Two equivalent questions (in our model):

- What is the maximum memory of any parallel execution?
- What is the topological cut with maximum weight?

Computing the maximum topological cut

Literature:

- Lots of studies of various cuts in non-directed graphs ([Diaz 2000] on Graph Layout Problems)
- Minimum cut is polynomial on both directed/non-directed graphs
- Maximum cut NP-complete on both directed/non-directed graphs ([Karp 1972] for non-directed, [Lampis 2011] for directed ones)
- Not much for topological cuts

Theorem

Computing the maximum topological cut of a DAG can be done in polynomial time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Consider one classical LP formulation for finding a minimum cut:

$$egin{aligned} \min \sum_{(i,j)\in E} m_{i,j}d_{i,j} \ orall (i,j)\in E, \ d_{i,j}\geq p_i-p_j \ orall (i,j)\in E, \ d_{i,j}\geq 0 \ p_s=1, \ p_t=0 \end{aligned}$$

• Consider one classical LP formulation for finding a minimum cut:

$$\min \sum_{(i,j)\in E} m_{i,j}d_{i,j}$$
 $orall (i,j)\in E, \quad d_{i,j}\geq p_i-p_j$
 $orall (i,j)\in E, \quad d_{i,j}\geq 0$
 $p_s=1, \quad p_t=0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

● Integer solution ⇔ topological cut

• Consider one classical LP formulation for finding a minimum cut:

$$egin{aligned} &\max\sum_{(i,j)\in E}m_{i,j}d_{i,j}\ &orall (i,j)\in E, \ d_{i,j}=p_i-p_j\ &orall (i,j)\in E, \ d_{i,j}\geq 0\ &p_s=1, \ p_t=0 \end{aligned}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Integer solution ⇔ topological cut
- Then change the optimization direction (min \rightarrow max)

• Consider one classical LP formulation for finding a minimum cut:

$$egin{aligned} &\max\sum_{(i,j)\in E}m_{i,j}d_{i,j}\ &orall (i,j)\in E, \ d_{i,j}=p_i-p_j\ &orall (i,j)\in E, \ d_{i,j}\geq 0\ &p_s=1, \ p_t=0 \end{aligned}$$

- Integer solution ⇔ topological cut
- Then change the optimization direction (min ightarrow max)
- Draw w uniformly in]0,1[, define the cut such that $S_w = \{i \mid p_i > w\}, \quad T_w = \{i \mid p_i \le w\}$
- Expected cost of this $cut = M^*$ (opt. rational solution)
- All cuts with random w have the same cost M*

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Dual problem: Min-Flow (larger than all edge weights)
- Idea: use an optimal algorithm for Max-Flow

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary 1

Predict the maximal memory of any dynamic scheduling ⇔ Compute the maximal topological cut

Two algorithms:

- Linear program + rounding
- Direct algorithm based on MaxFlow/MinCut

Downsides:

- Large running time: $O(|V|^2|E|)$ or solving a LP
- May include edges corresponding to the computing of more than *p* tasks

Faster Max. Memory Computation for SP Graphs

Recursive algorithm to compute maximum topological cut on SP-graphs:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Single edge $i \rightarrow j$: $M(G) = m_{i,j}$
- Series combination: $M(G) = max(M(G_1), M(G_2))$
- Parallel combination: $M(G) = M(G_1) + M(G_2)$

Complexity: O(|E|)Proof:

- Consider tree of compositions: (full) binary tree
- |E| leaves
- |E| 1 internal nodes (compositions)

Maximum memory with p processors

Change in the model:

- Black (regular) edges
- Red edges corresponding to computations

Definition

P-MaxTopCut Given a graph with black/red edges and a number p of processor, what is the maximal weight of a topological cut including at most p red edges?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

P-MaxTopCut is NP-complete

Compute the maximum memory with p red edges M(G, p):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Adapt previous algorithm:
 Compute M(G, k) for each k = 1,..., p

Compute the maximum memory with p red edges M(G, p):

- Adapt previous algorithm:
 Compute M(G, k) for each k = 1,..., p
- Single edge $i \to j$: $M(G, k) = \begin{cases} m_{i,j} & \text{if edge is black or } k \ge 1 \\ -\infty & \text{otherwise} \end{cases}$

Compute the maximum memory with p red edges M(G, p):

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Adapt previous algorithm:
 Compute M(G, k) for each k = 1,..., p
- Single edge $i \rightarrow j$: $M(G, k) = \begin{cases} m_{i,j} & \text{if edge is black or } k \ge 1 \\ -\infty & \text{otherwise} \end{cases}$
- Series combination: M(G, k) = max(M(G₁, k), M(G₂, k))

Compute the maximum memory with p red edges M(G, p):

- Adapt previous algorithm: Compute M(G, k) for each k = 1,..., p
- Single edge $i \rightarrow j$: $M(G, k) = \begin{cases} m_{i,j} & \text{if edge is black or } k \ge 1 \\ -\infty & \text{otherwise} \end{cases}$
- Series combination: $M(G, k) = max(M(G_1, k), M(G_2, k))$
- Parallel combination: $M(G, k) = max_{j=0...k}M(G_1, j) + M(G_2, k - j)$

Complexity:

- Simple Dynamic Programming algorithm: $O(|E|p^2)$.
- By restricting the search on each subgraph to w(G) (maximum width), and with tighter analysis: O(|E|p).

Summary 2

Predict the maximal memory of any dynamic scheduling ⇔ Compute the maximal topological cut

Two algorithms:

- Linear program + rounding
- Direct algorithm based on MaxFlow/MinCut

Downsides:

- Large running time $(O(|V|^2|E|))$
- Taking into account the bound on task being processed makes the problem NP complete

Special case of SP graphs:

- Max. Top. cut computed in O(|E|)
- Max. Top. cut with p procs computed in O(|E|p)

Outline

Minimize Memory for Trees

- 2 Minimize Memory for Series-Parallel Graphs
- 3 Minimize I/Os for Trees under Bounded Memory

4 Complexity and Space-Time Tradeoffs for Parallel Tree Processing

6 Parallel Processing of DAGs with Limited Memory

- Model and maximum parallel memory
- Maximum parallel memory/maximal topological cut
- Efficient scheduling with bounded memory
- Heuristics and simulations

Coping with limiting memory

Problem:

- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Coping with limiting memory

Problem:

- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

Our solution:

• Add edges to guarantee that any parallel execution stays below *M fictitious dependences to reduce maximum memory*

• Minimize the obtained critical path

Coping with limiting memory

Problem:

- Limited available memory M
- Allow use of dynamic schedulers
- Avoid running out of memory
- Keep high level of parallelism (as much as possible)

Our solution:

• Add edges to guarantee that any parallel execution stays below *M fictitious dependences to reduce maximum memory*

• Minimize the obtained critical path

Problem definition and complexity

Definition (PartialSerialization)

Given a DAG G = (V, E) and a bound M, find a set of new edges E' such that $G' = (V, E \cup E')$ is a DAG, $MaxMem(G') \le M$ and CritPath(G') is minimized.

Theorem

PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule σ of G which uses at most a memory M.

NP-completeness – proof sketch

• Reduction from 3-Partition: a_i s.t. $\sum a_i = mB$, solution: *m* sets of 3 a_i 's summing to *B*

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

-

- Set the memory bound to B
- Bound on the critical path: m

NP-completeness - proof sketch

Reduction from 3-Partition: a_i s.t. ∑ a_i = mB, solution: m sets of 3 a_i's summing to B

- Set the memory bound to B
- Bound on the critical path: m
- Solution to PartialSerialization \Leftrightarrow group edges by 3 s.t. $\sum a_i = B$

Outline

Minimize Memory for Trees

- 2 Minimize Memory for Series-Parallel Graphs
- 3 Minimize I/Os for Trees under Bounded Memory

4 Complexity and Space-Time Tradeoffs for Parallel Tree Processing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

6 Parallel Processing of DAGs with Limited Memory

- Model and maximum parallel memory
- Maximum parallel memory/maximal topological cut
- Efficient scheduling with bounded memory
- Heuristics and simulations

Heuristic solutions for PARTIALSERIALIZATION

Framework:

(inspired by [Sbîrlea et al. 2014])

- Compute a max. top. cut (S, T)
- 2 If weight $\leq M$: succeeds
- Add edge (u, v) with u ∈ T, v ∈ S without creating cycles;
 or fail

Goto Step 1

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule, always succeeds

MaxSize targets nodes dealing with large data MaxMinSize variant of MaxSize

Simulations: dense random graphs (25, 50, 100 nodes)

(日) (四) (日) (日) (日)

- x: memory (0 = DFS, 1 = MaxTopCut) median ratio MaxTopCut / DFS memory ≈ 1.3
- y: CP / original CP \rightarrow lower is better
- MinLevels performs best

Simulations: sparse random graphs (25, 50, 100 nodes)

- x: memory (0 = DFS, 1 = MaxTopCut) median ratio MaxTopCut / DFS memory ≈ 2
- y: CP / original CP \rightarrow lower is better
- MinLevels performs best, but might fail

Simulations - Pegasus workflows (LIGO 100 nodes)

イロト 不得 トイヨト イヨト

э

- Median ratio MaxTopCut / DFS \approx 20
- MinLevels performs best, RespectOrder always succeeds

Simulations - Pegasus workflows (LIGO 100 nodes)

- Median ratio MaxTopCut / DFS \approx 20
- MinLevels performs best, RespectOrder always succeeds
- Memory divided by 5 for CP multiplied by 3

Summary – Memory-Aware DAG Scheduling

Several models:

- Memory weights on edges and nodes, inputs+outputs+tmp needed to compute tasks
- e Memory weights only on edges Processing tasks ⇔ replace inputs by outputs
- (Memory increment on nodes)
 - Model 2 emulates 1, Model 3 emulates 1 and 2, ...

- Choose the right model to solve each problem
- Same for in-trees vs. out-trees

Summary – Memory-Aware DAG Scheduling

Several models:

- Memory weights on edges and nodes, inputs+outputs+tmp needed to compute tasks
- e Memory weights only on edges Processing tasks ⇔ replace inputs by outputs
- (Memory increment on nodes)
 - Model 2 emulates 1, Model 3 emulates 1 and 2, ...
 - Choose the right model to solve each problem
 - Same for in-trees vs. out-trees

Results:

- One processor: optimal algorithms for trees (postorder or not)
- Several processors: NP-complete problem, no (α, β) -approx.
- Dynamic scheduling with memory bound:
 - Compute the worst memory: polynomial (linear for SP-graphs)
 - Limit memory: NP-complete, heuristic solutions