Communication-Avoiding Algorithms

Grégoire Pichon, Bora Ucar & Frédéric Vivien

(Original slides by Loris Marchal)

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: January 2023
https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Yet Another Motivation. ..

.for limiting communications

10000
1000
w
2
]
.2 100 -
e
= ®now (45nm)
10 + m 2018 (11nm in this case)
1 4
N3 > X
Q\’o . \ég, Q\Q ;‘}\\Q QSQ (\0(" “7&@
L &F & &S B
& & & & s
& & &
6{\ d} Source: John Shalf, LBL

[m] = = =

Communication-Avoiding Algorithms

Context: Distributed Memory

Frey

memory memory memory memory

‘ disk ‘

Communications: Data movements between:
@ one processor and its memory

o different processors/memories

Objective:
@ Derive communication lower bounds for many linear algebra
operations

@ Design communication-optimal algorithms

Reminder: Matrix Product Lower Bound

Context: Single processor + Memory (size M)

‘ disk ‘

@ Analysis in phases of M 1/O operations

@ Bound on the number of elementary product in each phase:
F = O(M3/?)

Geometric argument: Loomis-Whitney inequality
o At least n3/F phases, of M I/Os, in total: Q(n3/v/M) 1/0s

Communication-Avoiding Algorithms

@ Generalization to other Linear Algebra Algorithms
@ Generalized Matrix Computations
@ /O Analysis
@ Application to LU Factorization

© Analysis and Lower Bounds for Parallel Algorithms
@ Matrix Multiplication Lower Bound for P processors
@ 2D and 3D Algorithms for Matrix Multiplication
@ 2.5D Algorithm for Matrix Multiplication

© Conclusion

Communication-Avoiding Algorithms

@ Generalization to other Linear Algebra Algorithms
@ Generalized Matrix Computations
@ /O Analysis
@ Application to LU Factorization

Generalization to other Linear Algebra Algorithms

@ Inputs/Ouput: n x n matrices A,B,C

@ Any mapping of the matrices to the memory
(possibly overlapping)

Generalization to other Linear Algebra Algorithms

@ Inputs/Ouput: n x n matrices A,B,C

@ Any mapping of the matrices to the memory
(possibly overlapping)

General computation
For all (i,)) € Sc,

C,"J' — f,',j (g;J7k(A;’k, Bk,j) for k € 5,',1', any other arguments)

Generalization to other Linear Algebra Algorithms

@ Inputs/Ouput: n x n matrices A,B,C

@ Any mapping of the matrices to the memory
(possibly overlapping)

General computation
For all (i,)) € Sc,

C,'J' — f,',j (g;J7k(A;,k, Bk,j) for k € 5,',1', any other arguments)

@ For matrix multiplication:

Generalization to other Linear Algebra Algorithms

@ Inputs/Ouput: n x n matrices A,B,C

@ Any mapping of the matrices to the memory
(possibly overlapping)

General computation
For all (i,)) € Sc,

Chp = g <g;J7k(A;,k, By j) for k € S; j, any other arguments)

@ For matrix multiplication:

@ fij: summation, gijk: product
o Sij=[L,n], Sc =[1,n] x [1,n]

Generalized Matrix Computations

General computation

For all (i,)) € Sc,

Chp = s (g,-k,-yk(A,-,k, By j) for k € S; j, any other arguments)

e f;j and gjj, non-trivial:
o gjjk needs to load the value of A; x and By j in memory
o f;j needs at least an “accumulator” while results of g; ; «(...) are
loaded /computed in memory one after the other

Generalized Matrix Computations

General computation

For all (i,)) € Sc,

Chp = s (g;J7k(A;,k, By j) for k € S j, any other arguments)

e f;j and gjj, non-trivial:
o gjjk needs to load the value of A; x and By j in memory
o f;j needs at least an “accumulator” while results of g; ; «(...) are
loaded /computed in memory one after the other

e Sc, Sij, fij, &ijk possibly determined at runtime

Generalized Matrix Computations

General computation

For all (i,)) € Sc,

Chp = s (g;J7k(A;,k, By j) for k € S j, any other arguments)

e f;j and g;j non-trivial:
o gjjk needs to load the value of A; x and By j in memory
o f;j needs at least an “accumulator” while results of g; ; «(...) are
loaded /computed in memory one after the other

e Sc, Sij, fij, &ijk possibly determined at runtime

o Correct computations may require special ordering of computations:
no such constraint needed for the lower bound:
o any order for computing the g;; «'s
e any order for computing and storing the f; ;'s

Geometric analysis

Analysis based on Loomis-Whitney inequality:

Theorem (Discrete Loomis-Whitney Inequality)

Let V be a finite subset of Z3 and Vi, Vs, V3 denote the orthogonal
projections of VV on each coordinate planes, we have:

V2 < |Va| - |Val - | Vs,

Vy
Vs
Vi

|/O Analysis
One phase: M 1/0Os operations (loads and stores)

Classify operands based on their root and destination:
@ R1: operands present in fast memory at the beginning of the phase or
loaded during the phase (at most 2M such operands)
@ R2: operands computed during the phase

|/O Analysis
One phase: M 1/0Os operations (loads and stores)

Classify operands based on their root and destination:
@ R1: operands present in fast memory at the beginning of the phase or
loaded during the phase (at most 2M such operands)
@ R2: operands computed during the phase

@ D1: operands left in fast memory at the end of the phase or written
(at most 2M such operands)

@ D2: operands discarded

|/O Analysis
One phase: M 1/0Os operations (loads and stores)

Classify operands based on their root and destination:
@ R1: operands present in fast memory at the beginning of the phase or
loaded during the phase (at most 2M such operands)
@ R2: operands computed during the phase
@ D1: operands left in fast memory at the end of the phase or written
(at most 2M such operands)
@ D2: operands discarded

e Forget about R2/D2 operands

|/O Analysis
One phase: M 1/0Os operations (loads and stores)

Classify operands based on their root and destination:
@ R1: operands present in fast memory at the beginning of the phase or
loaded during the phase (at most 2M such operands)
@ R2: operands computed during the phase
@ D1: operands left in fast memory at the end of the phase or written
(at most 2M such operands)
@ D2: operands discarded

e Forget about R2/D2 operands
@ At most 4M operands available in one phase, for each matrix

|/O Analysis
One phase: M 1/0Os operations (loads and stores)

Classify operands based on their root and destination:
@ R1: operands present in fast memory at the beginning of the phase or
loaded during the phase (at most 2M such operands)
@ R2: operands computed during the phase
@ D1: operands left in fast memory at the end of the phase or written
(at most 2M such operands)
D2: operands discarded

(]

Forget about R2/D2 operands

At most 4M operands available in one phase, for each matrix
Loomis-Whitney = at most F = /(4M)3 computations of g

|/O Analysis

One phase: M 1/0Os operations (loads and stores)

Classify operands based on their root and destination:

R1: operands present in fast memory at the beginning of the phase or
loaded during the phase (at most 2M such operands)

@ R2: operands computed during the phase
@ D1: operands left in fast memory at the end of the phase or written

e 6 6 ¢

(at most 2M such operands)
D2: operands discarded

Forget about R2/D2 operands

At most 4M operands available in one phase, for each matrix
Loomis-Whitney = at most F = /(4M)3 computations of g
Total number of loads and stores:

MﬁJ ZM{ (4GI\/I)3J Zsjﬂ_M

Application to LU Factorization (1/2)

U (done)

LU factorization (Gaussian elimination):
@ Convert a matrix A into product L x U

@ L is lower triangular with diagonal 1

L (done)

@ U is upper triangular
o (L— D+ U) stored in place with A

LU Algorithm
Fork=1...n—1:
@ Fori=k+1...n,
Ai k < Aik/ Ak k (column/panel preparation)

@ Fori=k+1...n,
Forj=k+1...n,
Aij < Aij — AikAxj (update)

Application to LU Factorization (2/2)

Can be expressed as follows:

U,'J = A,',j — ZLi’k . Uk,j for i SJ
k<i
L,"j: Ai,j_ZLi,k'Uk,j /UJ,J fOI’i>j
k<j

Fits the generalized matrix computations:
C(i.) = iy (€1ik(AG. k), B(k.])) for k € S, K)

with:

Application to LU Factorization (2/2)

Can be expressed as follows:

U,"j = A,',j — ZL,’};(. Uk,j for i SJ
k<i
L,"j: Ai,j_ZLi,k'Uk,j /UJ,J fOI’i>j
k<j

Fits the generalized matrix computations:

C(i.J) = £ (1 k(A k), B(K.) for k € S, K)
with:
e A=B=C
@ gk multiplies L; x - Uy j
e f;j performs the sum, subtracts from A;; (divides by U, ;)
o 1/0 lower bound: Q(G/vVM)=Q(n3/v/M)
@ Some algorithms attain this bound (hard because of pivoting)

Communication-Avoiding Algorithms

© Analysis and Lower Bounds for Parallel Algorithms
@ Matrix Multiplication Lower Bound for P processors
@ 2D and 3D Algorithms for Matrix Multiplication
@ 2.5D Algorithm for Matrix Multiplication

Matrix Multiplication Lower Bound for P processors

Lemma

Consider a conventional N x N matrix multiplication performed on P
processors with distributed memory. A processor with memory M that
performs W elementary products must send or receive at least

2\T2Lx/ﬂ — M elements.

Matrix Multiplication Lower Bound for P processors

Lemma

Consider a conventional N x N matrix multiplication performed on P
processors with distributed memory. A processor with memory M that
performs W elementary products must send or receive at least
w

N M elements.

Theorem

Consider a conventional N x N matrix multiplication on P processors,
each with a memory M. Some processor has a volume of |/0 at least
N

2v2PVM o

Matrix Multiplication Lower Bound for P processors

Lemma

Consider a conventional N x N matrix multiplication performed on P
processors with distributed memory. A processor with memory M that
performs W elementary products must send or receive at least

w__
N M elements.

Theorem

Consider a conventional N x N matrix multiplication on P processors,
each with a memory M. Some processor has a volume of |/0 at least
N

vaprvi M

NB: bound useful only when M < N?/(2P3/?)

Cannon’s 2D algorithm

@ Processors organized on a square 2D grid of size v/P x VP

e A, B, C matrices distributed by blocks of size N/v/P x N/v/P
Processor P; ; initially holds matrices A; ;, B;;, computes C; ;

@ At each step, each proc. performs a A; , x By ; block product

Starting position Starting position

Stagger left Stagger up
Alij] := Ali,j+1] B[i,jl := Bli+1,j]
Shift right Shift down

Bi,j]:= B[i-1,j]

Al,j] := Ali,j-1]

Cannon’s 2D algorithm

@ Processors organized on a square 2D grid of size v/P x VP

e A, B, C matrices distributed by blocks of size N/v/P x N/v/P
Processor P; ; initially holds matrices A; ;, B;;, computes C; ;

@ At each step, each proc. performs a A; , x By ; block product

Starting position Starting position

Stagger up

Stagger left
BIi,j] := Bli+1,j]

Ali,j] := Ali,j+1]

Shift down
Bi,j]:= B[i-1,j]

Shift right
Alijl := Al j-11

(color = k)

o First reallign matrices:
o Shift A;; blocks to the left by /

(wraparound)
o Shift B;; blocks to the top by j
(wraparound)

Then P;; holds blocks A; ;y; and Bi

Cannon’s 2D algorithm

@ Processors organized on a square 2D grid of size v/P x VP

e A, B, C matrices distributed by blocks of size N/v/P x N/v/P
Processor P; ; initially holds matrices A; ;, B;;, computes C; ;

@ At each step, each proc. performs a A; , x By ; block product

Starting position Starting position

Stagger left Stagger up

Alijl := Ali,j+1] B[ij] := Bli+1,j]
Shift right Shift down
B[i,j] := BI[i-1,j]

Alij] := Alij-1]

(color = k)

o First reallign matrices:
o Shift A;; blocks to the left by /

(wraparound)
o Shift B;; blocks to the top by j
(wraparound)

Then P;; holds blocks A; ;y; and Bi
@ At each step:
o Compute one block product

o Shift A blocks right
o Shift B blocks down

Cannon’s 2D algorithm

@ Processors organized on a square 2D grid of size v/P x VP

e A, B, C matrices distributed by blocks of size N/v/P x N/v/P
Processor P; ; initially holds matrices A; ;, B;;, computes C; ;

@ At each step, each proc. performs a A; , x By ; block product

A

Starting position Starting position

Stagger left Stagger up
Alij] := Ali,j+1] B[i,jl := Bli+1,j]
Shift right Shift down
Ali,j]1:= Ali,j-11 B[i,j] := BI[i-1,j]

(color = k)

o First reallign matrices:
o Shift A;; blocks to the left by /
(wraparound)
o Shift B;; blocks to the top by j
(wraparound)
Then P;; holds blocks A; ;y; and Bi
@ At each step:

o Compute one block product
o Shift A blocks right
o Shift B blocks down

e Total /O cost: ©(N?V/P)
e Storage ©(N?/P) per proc.

Other 2D Algorithm: SUMMA

o SUMMA: Scalable Universal Matrix Multiplication Algorithm

@ Same 2D grid distribution: P;; holds A;;, B;j, computes C;;

@ At each step k, column k of A and row k of B are broadcasted
(from processors owning the data)

@ Each processor computes a local contribution (outer-product)

k J B(kJ)

Brow

A(lK)]
©2012 Scott B. Baden /CSE 260/ Fall 2012 Acol

@ Smaller communications = smaller temporary storage

@ Same 1/0 volume: ©(N?/P)

|/O Lower Bound for 2D algorithms

Theorem

Consider a conventional matrix multiplication on P processors each with
O(N?/P) storage, some processor has a |/0O volume at least Q(N?//P).

Proof: Previous result: Q(N3/Pv/M) with M = N2/P.

o When balanced, total 1/0 volume: ©(N?v/P)
@ Both Cannon'’s algorithm and SUMMA are optimal

Can we do better?

|/O Lower Bound for 2D algorithms

Theorem

Consider a conventional matrix multiplication on P processors each with
O(N?/P) storage, some processor has a |/0O volume at least Q(N?//P).

Proof: Previous result: Q(N3/Pv/M) with M = N2/P.

@ When balanced, total 1/0 volume: ©(N?v/P)

@ Both Cannon'’s algorithm and SUMMA are optimal among 2D
algorithms (memory limited to O(N?/P))

Can we do better?

3D Algorithm

@ Consider 3D grid of processor: g X g X g
(9= P2 ="/P)

@ Processor i/, j, k owns blocks A; i, By j, CIij)

@ Matrices are replicated (including C)

@ Each processor computes its local contribution

@ Then summation of the various C,.(;) for all k

3D Algorithm

@ Consider 3D grid of processor: g X g X g %

(g=PY3="P)

Processor i, j, k owns blocks A; x, By j, ck

i

Matrices are replicated (including C)

Each processor computes its local contribution

@ Then summation of the various C,.(;) for all k

Memory needed: ©(N?/q?) = ©(N?/P?/3) per processor
Total 1/0 volume: ©(N?/q? x ¢3) = ©(N?q) = O(N?V/P)

3D Algorithm

@ Consider 3D grid of processor: g X g X g %
(¢ =P ="P)

Processor i, j, k owns blocks A; x, By j, Ci(j-()

Matrices are replicated (including C)

@ Each processor computes its local contribution

@ Then summation of the various C,.(;) for all k

o Memory needed: ©(N?/q?) = ©(N?/P?/3) per processor

e Total I/0 volume: ©(N?/q? x ¢3) = ©(N?q) = O(N?V/P)
Lower Bound:

@ Previous theorem does not give useful bound
(only when M < N2/(2/6P%/3))

@ More complex analysis shows that the |/O volume on some processor
is O(N2/P2/3)

@ In total, when balanced ©(N?v/P) = 3D algo. is optimal

3D Algorithm

@ Consider 3D grid of processor: g X g X g %
(¢ =P ="P)

Processor i, j, k owns blocks A; x, By j, Ci(j-()

Matrices are replicated (including C)

@ Each processor computes its local contribution
@ Then summation of the various C,.(;) for all k
o Memory needed: ©(N?/q?) = ©(N?/P?/3) per processor
e Total I/0 volume: ©(N?/q? x ¢3) = ©(N?q) = O(N?V/P)
Lower Bound:
@ Previous theorem does not give useful bound
(only when M < N2/(2/6P%/3))
@ More complex analysis shows that the |/O volume on some processor
is O(N2/P2/3)
o In total, when balanced ©(N?+v/P) = 3D algo. is optimal
@ Can we do better?

2.5D Algorithm (1/2)

@ 3D algorithm requires large memory on each processor
(/P copies of each matrices)

e What if we have space for only 1 < ¢ < v/P copies ?
@ Assume each processor has a memory M = O(c - N?/P)

@ Arrange processors in y/P/c x \/P/c x c grid:

c layers, each layer with P/c processors in square grid

e A, B, C distributed by blocks of size Ny/c/P x N/c/P, replicated
on each layer

(P/C)I/Z

0
@\a\

d

o NB: ¢ =1 gets 2D, ¢ = P'/3 gives 3D

2.5D Algorithm (2/2)

N
N
]
@ Each layer responsible for a fraction 1/c of Cannon's alg.: Different

initial shifts of A and B
o Finally, sum C over layers

(P/c) 12

2.5D Algorithm (2/2)

N
N
3

@ Each layer responsible for a fraction 1/c of Cannon's alg.: Different
initial shifts of A and B
o Finally, sum C over layers

e Total /0O volume: ©(N?\/P/c)
o Replication, initial shift, final sum: ©(N2c)
o c layers of fraction 1/c of Cannon's alg. with grid size \/P/c :

o (N2 /PJc)

(P/c) 12

2.5D Algorithm (2/2)

N
N
]
Each layer responsible for a fraction 1/c of Cannon's alg.: Different

initial shifts of A and B
Finally, sum C over layers

Total 1/0O volume: ©(N?\/P/c)
o Replication, initial shift, final sum: ©(N2c)
o c layers of fraction 1/c of Cannon's alg. with grid size \/P/c :

o (N2 /PJc)

@ Reaches lower bound on 1/Os per processor:

) = Q(N?/VcP)

(P/c) 12

Q(ﬁm)i”(wﬁw

Performance on Blue Gene P

C=16
Matrix multiplication on 16,384 nodes of BG/P
1.4 T T | |
communication
1.2 idle

95% reduction in comm computation m—

Execution time normalized by 2D

Source Jim Demmel ©2012 Scott B. Baden /CSE 260/ Fall 2012 27

Communication-Avoiding Algorithms

© Conclusion

Conclusion

Generalized |/O lower bound for matrix computations:
@ Apply to most linear algebra algorithms
@ Design of |/O-optimal algorithms

Parallel algorithms with distributed memory:
e Adapted /O lower bounds (depends on M on each processor)

@ Asymptotically optimal algorithm for matrix multiplication. ..
...and many other matrix computations
“communication-avoiding algorithms”

Here: focus on the total 1/O volume

Similar lower bound and analysis for the number of messages:
also important factor for performance

Variant: Write-avoiding algorithms for NVRAMs

(writes more expensive than reads)

	Introduction
	Generalization to other Linear Algebra Algorithms
	Generalized Matrix Computations
	I/O Analysis
	Application to LU Factorization

	Analysis and Lower Bounds for Parallel Algorithms
	Matrix Multiplication Lower Bound for P processors
	2D and 3D Algorithms for Matrix Multiplication
	2.5D Algorithm for Matrix Multiplication

	Conclusion

