Communication-Avoiding Algorithms

Grégoire Pichon, Bora Uçar & Frédéric Vivien (Original slides by Loris Marchal)

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: January 2023 https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Yet Another Motivation...

... for limiting communications

Communication-Avoiding Algorithms

Context: Distributed Memory

Communications: Data movements between:

- one processor and its memory
- different processors/memories

Objective:

- Derive communication lower bounds for many linear algebra operations
- Design communication-optimal algorithms

Reminder: Matrix Product Lower Bound

Context: Single processor + Memory (size M)

- Analysis in phases of M I/O operations
- Bound on the number of elementary product in each phase: $F = O(M^{3/2})$ Geometric argument: Loomis-Whitney inequality
- At least n^3/F phases, of M I/Os, in total: $\Omega(n^3/\sqrt{M})$ I/Os

Communication-Avoiding Algorithms

- Generalization to other Linear Algebra Algorithms
 - Generalized Matrix Computations
 - I/O Analysis
 - Application to LU Factorization
- 2 Analysis and Lower Bounds for Parallel Algorithms
 - Matrix Multiplication Lower Bound for P processors
 - 2D and 3D Algorithms for Matrix Multiplication
 - 2.5D Algorithm for Matrix Multiplication
- Conclusion

Communication-Avoiding Algorithms

- Generalization to other Linear Algebra Algorithms
 - Generalized Matrix Computations
 - I/O Analysis
 - Application to LU Factorization
- 2 Analysis and Lower Bounds for Parallel Algorithms
 - Matrix Multiplication Lower Bound for P processors
 - 2D and 3D Algorithms for Matrix Multiplication
 - 2.5D Algorithm for Matrix Multiplication
- Conclusion

- Inputs/Ouput: $n \times n$ matrices A, B, C
- Any mapping of the matrices to the memory (possibly overlapping)

- Inputs/Ouput: $n \times n$ matrices A, B, C
- Any mapping of the matrices to the memory (possibly overlapping)

General computation

$$C_{i,j} \leftarrow f_{i,j} \Big(g_{i,j,k}(A_{i,k}, B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments} \Big)$$

- Inputs/Ouput: $n \times n$ matrices A, B, C
- Any mapping of the matrices to the memory (possibly overlapping)

General computation

For all $(i,j) \in S_C$,

$$C_{i,j} \leftarrow f_{i,j} \Big(g_{i,j,k}(A_{i,k}, B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments} \Big)$$

• For matrix multiplication:

- Inputs/Ouput: $n \times n$ matrices A, B, C
- Any mapping of the matrices to the memory (possibly overlapping)

General computation

$$C_{i,j} \leftarrow f_{i,j} \Big(g_{i,j,k}(A_{i,k}, B_{k,j}) \text{ for } k \in \mathcal{S}_{i,j}, \text{ any other arguments} \Big)$$

- For matrix multiplication:
 - $f_{i,j}$: summation, $g_{i,j,k}$: product
 - $S_{i,j} = [1, n], S_C = [1, n] \times [1, n]$

Generalized Matrix Computations

General computation

$$C_{i,j} \leftarrow f_{i,j} \Big(g_{i,j,k}(A_{i,k}, B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments} \Big)$$

- $f_{i,j}$ and $g_{i,j,k}$ non-trivial:
 - $g_{i,j,k}$ needs to load the value of $A_{i,k}$ and $B_{k,j}$ in memory
 - $f_{i,j}$ needs at least an "accumulator" while results of $g_{i,j,k}(\ldots)$ are loaded/computed in memory one after the other
- S_C , $S_{i,j}$, $f_{i,j}$, $g_{i,j,k}$ possibly determined at runtime
- Correct computations may require special ordering of computations:
 no such constraint needed for the lower bound:
 - any order for computing the g_{i,i,k}'s
 - any order for computing and storing the $f_{i,j}$'s

Generalized Matrix Computations

General computation

$$C_{i,j} \leftarrow f_{i,j} \Big(g_{i,j,k}(A_{i,k}, B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments} \Big)$$

- $f_{i,j}$ and $g_{i,j,k}$ non-trivial:
 - $g_{i,j,k}$ needs to load the value of $A_{i,k}$ and $B_{k,j}$ in memory
 - $f_{i,j}$ needs at least an "accumulator" while results of $g_{i,j,k}(...)$ are loaded/computed in memory one after the other
- S_C , $S_{i,j}$, $f_{i,j}$, $g_{i,j,k}$ possibly determined at runtime
- Correct computations may require special ordering of computations:
 no such constraint needed for the lower bound:
 - any order for computing the g_{i,i,k}'s
 - any order for computing and storing the $f_{i,j}$'s

Generalized Matrix Computations

General computation

$$C_{i,j} \leftarrow f_{i,j} \Big(g_{i,j,k}(A_{i,k}, B_{k,j}) \text{ for } k \in S_{i,j}, \text{ any other arguments} \Big)$$

- $f_{i,j}$ and $g_{i,j,k}$ non-trivial:
 - $g_{i,j,k}$ needs to load the value of $A_{i,k}$ and $B_{k,j}$ in memory
 - $f_{i,j}$ needs at least an "accumulator" while results of $g_{i,j,k}(...)$ are loaded/computed in memory one after the other
- S_C , $S_{i,j}$, $f_{i,j}$, $g_{i,j,k}$ possibly determined at runtime
- Correct computations may require special ordering of computations:
 no such constraint needed for the lower bound:
 - any order for computing the $g_{i,j,k}$'s
 - ullet any order for computing and storing the $f_{i,j}$'s

Geometric analysis

Analysis based on Loomis-Whitney inequality:

Theorem (Discrete Loomis-Whitney Inequality)

Let V be a finite subset of \mathbb{Z}^3 and V_1, V_2, V_3 denote the orthogonal projections of V on each coordinate planes, we have:

$$|V|^2 \leq |V_1|\cdot |V_2|\cdot |V_3|,$$

One phase: M I/Os operations (loads and stores)

- R1: operands present in fast memory at the beginning of the phase or loaded during the phase (at most 2*M* such operands)
- R2: operands computed during the phase
- D1: operands left in fast memory at the end of the phase or written (at most 2*M* such operands)
- D2: operands discarded
- Forget about R2/D2 operands
- At most 4M operands available
- a Total number of leads and stores
 - Total Hamber of Totals and Stores

One phase: M I/Os operations (loads and stores)

- R1: operands present in fast memory at the beginning of the phase or loaded during the phase (at most 2*M* such operands)
- R2: operands computed during the phase
- D1: operands left in fast memory at the end of the phase or written (at most 2*M* such operands)
- D2: operands discarded

One phase: M I/Os operations (loads and stores)

- R1: operands present in fast memory at the beginning of the phase or loaded during the phase (at most 2*M* such operands)
- R2: operands computed during the phase
- D1: operands left in fast memory at the end of the phase or written (at most 2*M* such operands)
- D2: operands discarded
- Forget about R2/D2 operands
- At most 4M operands available in one phase, for each matrix
- Loomis-Whitney \Rightarrow at most $F = \sqrt{(4M)^3}$ computations of g
- Total number of loads and stores:

$$M\left\lfloor \frac{G}{F} \right\rfloor \ge M\left\lfloor \frac{G}{\sqrt{(4M)^3}} \right\rfloor \ge \frac{G}{8\sqrt{M}} - M$$

One phase: M I/Os operations (loads and stores)

- R1: operands present in fast memory at the beginning of the phase or loaded during the phase (at most 2*M* such operands)
- R2: operands computed during the phase
- D1: operands left in fast memory at the end of the phase or written (at most 2*M* such operands)
- D2: operands discarded
- Forget about R2/D2 operands
- At most 4M operands available in one phase, for each matrix
- Loomis-Whitney \Rightarrow at most $F = \sqrt{(4M)^3}$ computations of g
- Total number of loads and stores:

$$M\left\lfloor \frac{G}{F} \right\rfloor \ge M\left\lfloor \frac{G}{\sqrt{(4M)^3}} \right\rfloor \ge \frac{G}{8\sqrt{M}} - M$$

One phase: M I/Os operations (loads and stores)

- R1: operands present in fast memory at the beginning of the phase or loaded during the phase (at most 2*M* such operands)
- R2: operands computed during the phase
- D1: operands left in fast memory at the end of the phase or written (at most 2*M* such operands)
- D2: operands discarded
- Forget about R2/D2 operands
- At most 4M operands available in one phase, for each matrix
- Loomis-Whitney \Rightarrow at most $F = \sqrt{(4M)^3}$ computations of g
- Total number of loads and stores:

$$M\left\lfloor \frac{G}{F} \right\rfloor \ge M\left\lfloor \frac{G}{\sqrt{(4M)^3}} \right\rfloor \ge \frac{G}{8\sqrt{M}} - M$$

One phase: M I/Os operations (loads and stores)

- R1: operands present in fast memory at the beginning of the phase or loaded during the phase (at most 2*M* such operands)
- R2: operands computed during the phase
- D1: operands left in fast memory at the end of the phase or written (at most 2*M* such operands)
- D2: operands discarded
- Forget about R2/D2 operands
- At most 4M operands available in one phase, for each matrix
- Loomis-Whitney \Rightarrow at most $F = \sqrt{(4M)^3}$ computations of g
- Total number of loads and stores:

$$M\left\lfloor \frac{G}{F} \right\rfloor \geq M\left\lfloor \frac{G}{\sqrt{(4M)^3}} \right\rfloor \geq \frac{G}{8\sqrt{M}} - M$$

Application to LU Factorization (1/2)

LU factorization (Gaussian elimination):

- Convert a matrix A into product $L \times U$
- L is lower triangular with diagonal 1
- U is upper triangular
- (L D + U) stored in place with A

LU Algorithm

For
$$k = 1 ... n - 1$$
:

- For $i = k + 1 \dots n$, $A_{i,k} \leftarrow A_{i,k}/A_{k,k}$ (column/panel preparation)
- For $i = k + 1 \dots n$, For $j = k + 1 \dots n$, $A_{i,j} \leftarrow A_{i,j} - A_{i,k} A_{k,j}$ (update)

Application to LU Factorization (2/2)

Can be expressed as follows:

$$U_{i,j} = A_{i,j} - \sum_{k < i} L_{i,k} \cdot U_{k,j}$$
 for $i \le j$

$$L_{i,j} = \left(A_{i,j} - \sum_{k < j} L_{i,k} \cdot U_{k,j}\right) / U_{j,j}$$
 for $i > j$

Fits the generalized matrix computations:

$$C(i,j) = f_{i,j}(g_{i,j,k}(A(i,k),B(k,j)) \text{ for } k \in S_{i,j},K)$$

with:

Application to LU Factorization (2/2)

Can be expressed as follows:

$$U_{i,j} = A_{i,j} - \sum_{k < i} L_{i,k} \cdot U_{k,j}$$
 for $i \le j$

$$L_{i,j} = \left(A_{i,j} - \sum_{k < j} L_{i,k} \cdot U_{k,j} \right) / U_{j,j}$$
 for $i > j$

Fits the generalized matrix computations:

$$C(i,j) = f_{i,j}(g_{i,j,k}(A(i,k),B(k,j)) \text{ for } k \in S_{i,j},K)$$

with:

- A = B = C
- $g_{i,j,k}$ multiplies $L_{i,k} \cdot U_{k,j}$
- ullet $f_{i,j}$ performs the sum, subtracts from $A_{i,j}$ (divides by $U_{j,j}$)
- I/O lower bound: $\Omega(G/\sqrt{M}) = \Omega(n^3/\sqrt{M})$
- Some algorithms attain this bound (hard because of pivoting)

Communication-Avoiding Algorithms

- Generalization to other Linear Algebra Algorithms
 - Generalized Matrix Computations
 - I/O Analysis
 - Application to LU Factorization
- Analysis and Lower Bounds for Parallel Algorithms
 - Matrix Multiplication Lower Bound for P processors
 - 2D and 3D Algorithms for Matrix Multiplication
 - 2.5D Algorithm for Matrix Multiplication
- Conclusion

Matrix Multiplication Lower Bound for P processors

Lemma

Consider a conventional $N \times N$ matrix multiplication performed on P processors with distributed memory. A processor with memory M that performs W elementary products must send or receive at least $\frac{W}{2\sqrt{2}\sqrt{M}} - M$ elements.

Theorem

Consider a conventional N × N matrix multiplication on P processors, each with a memory M. Some processor has a volume of I/O at least $\frac{N^3}{2\sqrt{2}P\sqrt{M}} - M.$

Matrix Multiplication Lower Bound for P processors

Lemma

Consider a conventional $N \times N$ matrix multiplication performed on P processors with distributed memory. A processor with memory M that performs W elementary products must send or receive at least $\frac{W}{2\sqrt{2}\sqrt{M}} - M$ elements.

Theorem

Consider a conventional N \times N matrix multiplication on P processors, each with a memory M. Some processor has a volume of I/O at least $\frac{N^3}{2\sqrt{2}P\sqrt{M}} - M$.

NB: bound useful only when $M < N^2/(2P^{3/2})$

Matrix Multiplication Lower Bound for P processors

Lemma

Consider a conventional $N \times N$ matrix multiplication performed on P processors with distributed memory. A processor with memory M that performs W elementary products must send or receive at least $\frac{W}{2\sqrt{2}\sqrt{M}}$ – M elements.

Theorem

Consider a conventional $N \times N$ matrix multiplication on P processors, each with a memory M. Some processor has a volume of I/O at least $\frac{N^3}{2\sqrt{2}P\sqrt{M}}-M.$

NB: bound useful only when $M < N^2/(2P^{3/2})$

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$ Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- ullet At each step, each proc. performs a $A_{i,k} imes B_{k,j}$ block product

First reallign matrices:

- Shift A_{i,j} blocks to the left by i (wraparound)
- Shift B_{i,j} blocks to the top by j (wraparound)

- At each step:
 - Compute one block product
 - Shift A blocks right
 - Shift B blocks down
- Total I/O cost: $\Theta(N^2\sqrt{P})$
- ullet Storage $\Theta(N^2/P)$ per pro-

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$ Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- ullet At each step, each proc. performs a $A_{i,k} imes B_{k,j}$ block product

(color = k)

- First reallign matrices:
 - Shift A_{i,j} blocks to the left by i (wraparound)
 - Shift B_{i,j} blocks to the top by j (wraparound)

- At each step:
 - Compute one block product
 - Shift A blocks right
 - Shift B blocks down
- Total I/O cost: $\Theta(N^2\sqrt{P})$
- ullet Storage $\Theta(N^2/P)$ per proc

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$ Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- ullet At each step, each proc. performs a $A_{i,k} imes B_{k,j}$ block product

(color = k)

First reallign matrices:

- Shift A_{i,j} blocks to the left by i (wraparound)
- Shift B_{i,j} blocks to the top by j (wraparound)

- At each step:
 - Compute one block product
 - Shift A blocks right
 - Shift B blocks down
- Total I/O cost: $\Theta(N^2\sqrt{P})$
- ullet Storage $\Theta(N^2/P)$ per proc

- Processors organized on a square 2D grid of size $\sqrt{P} \times \sqrt{P}$
- A, B, C matrices distributed by blocks of size $N/\sqrt{P} \times N/\sqrt{P}$ Processor $P_{i,j}$ initially holds matrices $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- ullet At each step, each proc. performs a $A_{i,k} imes B_{k,j}$ block product

(color = k)

First reallign matrices:

- Shift A_{i,j} blocks to the left by i (wraparound)
- Shift B_{i,j} blocks to the top by j (wraparound)

- At each step:
 - Compute one block product
 - Shift A blocks right
 - Shift B blocks down
- Total I/O cost: $\Theta(N^2\sqrt{P})$
- Storage $\Theta(N^2/P)$ per proc.

Other 2D Algorithm: SUMMA

- SUMMA: Scalable Universal Matrix Multiplication Algorithm
- Same 2D grid distribution: $P_{i,j}$ holds $A_{i,j}$, $B_{i,j}$, computes $C_{i,j}$
- At each step k, column k of A and row k of B are broadcasted (from processors owning the data)
- Each processor computes a local contribution (outer-product)

- Smaller communications ⇒ smaller temporary storage
- Same I/O volume: $\Theta(N^2\sqrt{P})$

I/O Lower Bound for 2D algorithms

Theorem

Consider a conventional matrix multiplication on P processors each with $O(N^2/P)$ storage, some processor has a I/O volume at least $\Omega(N^2/\sqrt{P})$.

Proof: Previous result: $\Omega(N^3/P\sqrt{M})$ with $M=N^2/P$.

- When balanced, total I/O volume: $\Theta(N^2\sqrt{P})$
- Both Cannon's algorithm and SUMMA are optimal

Can we do better?

I/O Lower Bound for 2D algorithms

Theorem

Consider a conventional matrix multiplication on P processors each with $O(N^2/P)$ storage, some processor has a I/O volume at least $\Omega(N^2/\sqrt{P})$.

Proof: Previous result: $\Omega(N^3/P\sqrt{M})$ with $M=N^2/P$.

- When balanced, total I/O volume: $\Theta(N^2\sqrt{P})$
- Both Cannon's algorithm and SUMMA are optimal among 2D algorithms (memory limited to $O(N^2/P)$)

Can we do better?

- Consider 3D grid of processor: $q \times q \times q$ $(q = P^{1/3} = \sqrt[3]{P})$
- Processor i, j, k owns blocks $A_{i,k}, B_{k,j}, C_{i,j}^{(k)}$
- Matrices are replicated (including C)
- Each processor computes its local contribution
- Then summation of the various $C_{i,j}^{(k)}$ for all k
- Memory needed: $\Theta(N^2/q^2) = \Theta(N^2/P^{2/3})$ per processor
- Total I/O volume: $\Theta(N^2/q^2 \times q^3) = \Theta(N^2q) = \Theta(N^2\sqrt[3]{P})$

- Previous theorem does not give useful bound (only when $M < N^2/(2\sqrt{6}P^{2/3})$)
- More complex analysis shows that the I/O volume on some processor is $\Theta(N^2/P^{2/3})$
- In total, when balanced $\Theta(N^2\sqrt[3]{P}) \Rightarrow 3D$ algo. is optimal
- Can we do better?

- Consider 3D grid of processor: $q \times q \times q$ $(q = P^{1/3} = \sqrt[3]{P})$
- Processor i, j, k owns blocks $A_{i,k}, B_{k,j}, C_{i,j}^{(k)}$
- Matrices are replicated (including C)
- Each processor computes its local contribution
- Then summation of the various $C_{i,j}^{(k)}$ for all k
- Memory needed: $\Theta(N^2/q^2) = \Theta(N^2/P^{2/3})$ per processor
- Total I/O volume: $\Theta(N^2/q^2 \times q^3) = \Theta(N^2q) = \Theta(N^2\sqrt[3]{P})$

- Previous theorem does not give useful bound (only when $M < N^2/(2\sqrt{6}P^{2/3})$)
- More complex analysis shows that the I/O volume on some processor is $\Theta(N^2/P^{2/3})$
- In total, when balanced $\Theta(N^2\sqrt[3]{P}) \Rightarrow 3D$ algo. is optimal
- Can we do better?

- Consider 3D grid of processor: $q \times q \times q$ $(q = P^{1/3} = \sqrt[3]{P})$
- Processor i, j, k owns blocks $A_{i,k}, B_{k,j}, C_{i,j}^{(k)}$
- Matrices are replicated (including C)
- Each processor computes its local contribution
- Then summation of the various $C_{i,j}^{(k)}$ for all k
- Memory needed: $\Theta(N^2/q^2) = \Theta(N^2/P^{2/3})$ per processor
- Total I/O volume: $\Theta(N^2/q^2 \times q^3) = \Theta(N^2q) = \Theta(N^2\sqrt[3]{P})$

- Previous theorem does not give useful bound (only when $M < N^2/(2\sqrt{6}P^{2/3})$)
- More complex analysis shows that the I/O volume on some processor is $\Theta(N^2/P^{2/3})$
- In total, when balanced $\Theta(N^2\sqrt[3]{P}) \Rightarrow 3D$ algo. is optimal
- Can we do better?

- Consider 3D grid of processor: $q \times q \times q$ $(q = P^{1/3} = \sqrt[3]{P})$
- Processor i, j, k owns blocks $A_{i,k}, B_{k,j}, C_{i,j}^{(k)}$
- Matrices are replicated (including C)
- Each processor computes its local contribution
- Then summation of the various $C_{i,j}^{(k)}$ for all k
- Memory needed: $\Theta(N^2/q^2) = \Theta(N^2/P^{2/3})$ per processor
- Total I/O volume: $\Theta(\mathit{N}^2/\mathit{q}^2 \times \mathit{q}^3) = \Theta(\mathit{N}^2\mathit{q}) = \Theta(\mathit{N}^2\sqrt[3]{P})$

- Previous theorem does not give useful bound (only when $M < N^2/(2\sqrt{6}P^{2/3})$)
- More complex analysis shows that the I/O volume on some processor is $\Theta(N^2/P^{2/3})$
- In total, when balanced $\Theta(N^2\sqrt[3]{P}) \Rightarrow 3D$ algo. is optimal
- Can we do better?

2.5D Algorithm (1/2)

- 3D algorithm requires large memory on each processor $(\sqrt[3]{P}$ copies of each matrices)
- What if we have space for only $1 < c < \sqrt[3]{P}$ copies ?
- Assume each processor has a memory $M = O(c \cdot N^2/P)$
- Arrange processors in $\sqrt{P/c} \times \sqrt{P/c} \times c$ grid: c layers, each layer with P/c processors in square grid
- A, B, C distributed by blocks of size $N\sqrt{c/P} \times N\sqrt{c/P}$, replicated on each layer

• NB: c = 1 gets 2D, $c = P^{1/3}$ gives 3D

2.5D Algorithm (2/2)

- ullet Each layer responsible for a fraction 1/c of Cannon's alg.: Different initial shifts of A and B
- Finally, sum C over layers
- Total I/O volume: $\Theta(N^2 \sqrt{P/c})$
 - Replication, initial shift, final sum: $\Theta(N^2c)$
 - c layers of fraction 1/c of Cannon's alg. with grid size $\sqrt{P/c}$: $\Theta\left(N^2\sqrt{P/c}\right)$
- Reaches lower bound on I/Os per processor

$$\Omega\left(\frac{N^3}{P\sqrt{M}}\right) = \Omega\left(\frac{N^3}{P\sqrt{cN^2/P}}\right) = \Omega(N^2/\sqrt{cP})$$

2.5D Algorithm (2/2)

- ullet Each layer responsible for a fraction 1/c of Cannon's alg.: Different initial shifts of A and B
- Finally, sum C over layers
- Total I/O volume: $\Theta(N^2 \sqrt{P/c})$
 - Replication, initial shift, final sum: $\Theta(N^2c)$
 - c layers of fraction 1/c of Cannon's alg. with grid size $\sqrt{P/c}$: $\Theta\left(N^2\sqrt{P/c}\right)$
- Reaches lower bound on I/Os per processor

$$\Omega\left(\frac{N^3}{P\sqrt{M}}\right) = \Omega\left(\frac{N^3}{P\sqrt{cN^2/P}}\right) = \Omega(N^2/\sqrt{cP})$$

2.5D Algorithm (2/2)

- ullet Each layer responsible for a fraction 1/c of Cannon's alg.: Different initial shifts of A and B
- Finally, sum C over layers
- Total I/O volume: $\Theta(N^2 \sqrt{P/c})$
 - Replication, initial shift, final sum: $\Theta(N^2c)$
 - c layers of fraction 1/c of Cannon's alg. with grid size $\sqrt{P/c}$: $\Theta\left(N^2\sqrt{P/c}\right)$
- Reaches lower bound on I/Os per processor:

$$\Omega\left(\frac{N^3}{P\sqrt{M}}\right) = \Omega\left(\frac{N^3}{P\sqrt{cN^2/P}}\right) = \Omega(N^2/\sqrt{cP})$$

Performance on Blue Gene P

Communication-Avoiding Algorithms

- Generalization to other Linear Algebra Algorithms
 - Generalized Matrix Computations
 - I/O Analysis
 - Application to LU Factorization
- 2 Analysis and Lower Bounds for Parallel Algorithms
 - Matrix Multiplication Lower Bound for P processors
 - 2D and 3D Algorithms for Matrix Multiplication
 - 2.5D Algorithm for Matrix Multiplication
- Conclusion

Conclusion

Generalized I/O lower bound for matrix computations:

- Apply to most linear algebra algorithms
- Design of I/O-optimal algorithms

Parallel algorithms with distributed memory:

- Adapted I/O lower bounds (depends on M on each processor)
- Asymptotically optimal algorithm for matrix multiplication...
 ... and many other matrix computations
 "communication-avoiding algorithms"
- Here: focus on the total I/O volume
- Similar lower bound and analysis for the number of messages:
 also important factor for performance
- Variant: Write-avoiding algorithms for NVRAMs (writes more expensive than reads)