Pebble Game Models (2/2)

Grégoire Pichon, Bora Uçar \& Frédéric Vivien

(Original slides by Loris Marchal)

CNRS, INRIA, Université Lyon 1 \& ENS Lyon
CR15: January 2023
https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Pebble game - summary $1 / 2$

Input: Directed Acyclic Graph (= computation)
Rules:

- A pebble may be removed from a vertex at any time.
- A pebble may be placed on a source node at any time.
- If all immediate predecessors of an unpebbled vertex v are pebbled, a pebble may be placed on v.

Objective: put a pebble on each target (not necessary simultaneously) using a minimum number of pebbles

Number of pebbles:

- Number of registers in a processor
- Size of the (fast) memory (together with a large/slow disk)

Pebble game - summary 2/2

Results:

- Hard to find optimal pebbling scheme for general DAGs (NP-hard without recomputation, PSPACE-hard otherwise)
- Recursive formula for trees

What about I/Os?

(Black) Pebble game: limit the memory footprint

But usually:

- Memory size fixed
- Possible to write temporary data to the slower storage (disk)
- Data movements take time (Input/Output, or I/O)

NB: same study for any two-memory system:

- (fast, bounded) memory and (slow, large) disk
- (fast, bounded) cache and (slow, large) memory
- (fast, bounded) L1 cache and (slow, large) L2 cache

Red-Blue pebble game (Hong and Kung, 1981)

Two types of pebbles:

- Red pebbles: limited number S (slots in fast memory)
- Blue pebbles: unlimited number, only for storage (disk)

Rules:
(1) A red pebble may be placed on a vertex that has a blue pebble.
(2) A blue pebble may be placed on a vertex that has a red pebble.
(3) If all predecessors of a vertex v have a red pebble, a red pebble may be placed on v.
(4) A pebble (red or blue) may be removed at any time.
(0) No more than S red pebbles may be used at any time.
(0) A blue pebble can be placed on an input vertex at any time

Objective: put a red pebble on each target (not necessary simultaneously) using a minimum of times rules 1 and 2 (I/O operations)

Example: FFT graph

k levels, $n=2^{k}$ vertices at each level
Minimum number S of red pebbles?
How many I /Os for this minimum number S ?

Hong-Kung Lower Bound Method

Objective: Given a number of red pebbles, give a lower bound on the number of I / Os for any pebbling scheme of a graph.

Definition (span)

Given a DAG G, its S-span $\rho(S, G)$ is the maximum number of vertices of G that can be pebbled with S pebbles in the black pebble game, maximized over all initial placements of the S pebbles on G.

Rationale: with large $\rho(S, G)$, you can compute a lot of G with S pebbles (for a given starting point)

Find $\rho(3, G), \rho(2, G)$.

Span of the matrix product

Definition (span)

Given a DAG G, its S-span $\rho(S, G)$, is the maximum number of vertices of G that can be pebbled with S pebbles in the black pebble game, maximized over all initial placements of the S pebbles on G.

Theorem

For every DAG G to compute the product of two $N \times N$ matrices in a regular manner (performing the N^{3} products), the span is bounded by $\rho(S, G) \leq 2 S \sqrt{S}$ for $S \leq N^{2}$.

Lemma

Let T be a binary (in-)tree representing a computation, with p black pebbles on some vertices and an unlimited number of available pebbles. At most $p-1$ vertices can be pebbled in the tree without pebbling new inputs.

From Span to I/O Lower Bound

$T_{I / O}(S, G)$: number of I/O steps (red \leftrightarrow blue)

Theorem (Hong \& Kung, 1981)
For every pebbling scheme of a $D A G G=(V, E)$ in the red-blue pebble-game using at most S red pebbles, the number of I/O steps satisfies the following lower bound:

$$
\left\lceil T_{I / O}(S, G) / S\right\rceil \rho(2 S, G) \geq|V|-|\operatorname{Inputs}(G)|
$$

Recall that for matrix product $\rho(S, G) \leq 2 S \sqrt{S}$, hence:

$$
T_{I / O} \geq \frac{N^{3}-2 N^{2}}{4 \sqrt{2 S}}=\Theta\left(\frac{N^{3}}{\sqrt{S}}\right)
$$

Tight Lower Bound for Matrix Product

$$
\begin{aligned}
& b \leftarrow \sqrt{M / 3} \\
& \text { for } i=0, \rightarrow N / b-1 \text { do } \\
& \begin{array}{r}
\text { for } j=0, \rightarrow N / b-1 \text { do } \\
\quad \text { for } k=0, \rightarrow N / b-1 \text { do }
\end{array}
\end{aligned}
$$

Simple-Matrix-Multiply $\left(n, C_{i, j}^{b}, A_{i, k}^{b}, B_{k, j}^{b}\right)$

- I/Os of blocked algorithm: $4 \sqrt{3} N^{3} / \sqrt{M}$
- Previous bound on $\mathrm{I} / \mathrm{Os} \sim N^{3} / 4 \sqrt{2 M}$
- Many improvements needed to close the gap
- Presented here for $C \leftarrow C+A B$, square matrices

New operation: Fused Multiply Add

- Perform $c \leftarrow c+a \times b$ in a single step
- No temporary storage needed (3 inputs, 1 output)

Step 1: Use Only FMAs (Fused Multiply Add)

Theorem

Any algorithm for the matrix product can be transformed into using only FMA without increasing the required memory or the number of I/Os.

Transformation:

- If some $c_{i, j, k}$ is computed while $c_{i, j}$ is not in memory, insert a read before the multiplication
- Replace the multiplication by a FMA
- Remove the read that must occur before the addition $c_{i, j} \leftarrow c_{i, j}+c_{i, j, k}$, remove the addition
- Transform occurrences of $c_{i, j, k}$ into $c_{i, j}$
- If $c_{i, j, k}$ and $c_{i, j}$ were both in memory in some time-interval, remove operations with $c_{i, j, k}$ in this interval

Step 2: Concentrate on Read Operations

Theorem (Irony, Toledo, Tiskin, 2008)
Using N_{A} elements of A, N_{B} elements of B and N_{C} elements of C, we can perform at most $\sqrt{N_{A} N_{B} N_{C}}$ distinct FMAs.

Theorem (Discrete Loomis-Whitney Inequality)
Let V be a finite subset of \mathbb{Z}^{3} and V_{1}, V_{2}, V_{3} denote the orthogonal projections of V on each coordinate planes, we have

$$
|V|^{2} \leq\left|V_{1}\right| \cdot\left|V_{2}\right| \cdot\left|V_{3}\right|
$$

Step 3: Use Phases of R Reads (possibly $R \neq M$)

Theorem

During a phase with R reads with memory M, the number of $F M A s$ is bounded by

$$
F_{M+R} \leq\left(\frac{1}{3}(M+R)\right)^{3 / 2}
$$

Number F_{M+R} of FMAs constrained by:

$$
\left\{\begin{array}{l}
F_{M+R} \leq \sqrt{N_{A} N_{B} N_{C}} \\
0 \leq N_{A}, N_{B}, N_{C} \\
N_{A}+N_{B}+N_{C} \leq M+R
\end{array}\right.
$$

Using Lagrange multipliers, maximal value obtained when $N_{A}=N_{B}=N_{C}$

Step 4: Choose R and add write operations

In one phase, number of computations: $F_{M+R} \leq\left(\frac{1}{3}(M+R)\right)^{3 / 2}$
Total volume of reads:

$$
V_{\text {read }} \geq\left\lfloor\frac{N^{3}}{F_{M+R}}\right\rfloor \times R \geq\left(\frac{N^{3}}{F_{M+R}}-1\right) \times R
$$

Valid for all values of R, maximized when $R=2 M$:

$$
V_{\text {read }} \geq 2 N^{3} / \sqrt{M}-2 M
$$

Each element of C written at least once: $V_{\text {write }} \geq N^{2}$

Theorem

The total volume of I/Os is bounded by:

$$
V_{I / O} \geq \frac{2 N^{3}}{\sqrt{M_{\mathrm{CR15}}}}+N^{2}-2 M
$$

Extension to the Memory Hierarchy Pebble Game

Generalization for a memory/cache hierarchy of L levels:

- Level 1: fastest/most limited memory
- Level L: slow/unlimited memory
- p_{I} available pebbles at level $I<L$:
- Computation steps only with level-1 pebbles
- Initialization only with level-L pebbles
- Input from level I : if level- I pebble, put level- $(I-1)$ pebble
- Output to level I: if level- $(I-1)$ pebble, put level-I pebble Cumulated number of pebbles up to level $I: s_{I}=\sum_{i=1}^{l} p_{i}$. Number of inputs from/outputs to level I :

$$
T_{I}= \begin{cases}\Theta\left(N^{3} / \sqrt{s_{l-1}}\right) & \text { if } s_{I-1}<3 N^{2} \\ \Theta\left(N^{2}\right) & \text { otherwise }\end{cases}
$$

Recent Developments of Pebble Games

Restrict to pebbling without recomputation:

- Add white pebbles with red pebbles when computing
- White pebbles stay on vertices
- No computation possible if white pebble already present
- All nodes must be white-pebbled at the end

This restriction increases the number of red pebbles and I/Os by at most a $\log ^{3 / 2} n$ factor

Towards automatic derivation of lower bounds:

- Extend bounds for composite graphs
- Use special min-cuts instead of span

Parallel Red-Blue-White Pebble Game (cf. memory hierarchies)
Still an inspiring model!

Why so much fuss about matrix product?

BLAS: Basic Linear Algebra Subprograms

- Introduced in the 80s as a standard for LA computations
- Written first in FORTRAN
- Library provided by the vendor to ease use of new machines
- Organized by levels:
- Level 1: vector/vector operations $(x \cdot y)$
- Level 2: vector/matrix ($A x$)
- Level 3: matrix/matrix ($A B^{T}$, blocked algorithms)
- Implementations:
- Vendors (MKL from Intel, CuBLAS from NVidia, etc.)
- Automatic Tuning: ATLAS
- GotoBLAS
- Matrix product: still a large share of LA computations

Matrix partition is reused in L3 cache.Matrix partition is reused in L2 cache
Matrix partition is reused in L1 cache.Matrix partition is reused in registers.

Summary: Performance Bounds \& Rooftop Model

Computation ceilings

- Theoretical peak,
- Matrix-Matrix product (DGEMM)
- LINPACK (Top 500 ranking)

Bandwidth ceilings

- Cache bandwidth
- Memory bandwidth
- NUMA (Non Uniform Memory Access)

