Pebble Game Models (2/2) J

Grégoire Pichon, Bora Ucar & Frédéric Vivien

(Original slides by Loris Marchal)

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: January 2023
https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Pichon, Ugar & Vivien CR15 1/19

https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Pebble game — summary 1/2

Input: Directed Acyclic Graph (= computation)

Rules:
@ A pebble may be removed from a vertex at any time.
@ A pebble may be placed on a source node at any time.

o If all immediate predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

Objective: put a pebble on each target (not necessary simultaneously)
using a minimum number of pebbles

Number of pebbles:
@ Number of registers in a processor

@ Size of the (fast) memory (together with a large/slow disk)

Pichon, Ugar & Vivien CR15 2/19

Pebble game — summary 2/2

Results:

@ Hard to find optimal pebbling scheme for general DAGs
(NP-hard without recomputation, PSPACE-hard otherwise)

@ Recursive formula for trees

Pichon, Ugar & Vivien CR15 3/19

What about 1/0Os?

(Black) Pebble game: limit the memory footprint

But usually:
@ Memory size fixed
@ Possible to write temporary data to the slower storage (disk)

e Data movements take time (Input/Output, or 1/0)

NB: same study for any two-memory system:
o (fast, bounded) memory and (slow, large) disk
o (fast, bounded) cache and (slow, large) memory

o (fast, bounded) L1 cache and (slow, large) L2 cache

Pichon, Ugar & Vivien CR15 4/19

Red-Blue pebble game (Hong and Kung, 1981)

Two types of pebbles:
@ Red pebbles: limited number S (slots in fast memory)
@ Blue pebbles: unlimited number, only for storage (disk)
Rules:
@ A red pebble may be placed on a vertex that has a blue pebble.
@ A blue pebble may be placed on a vertex that has a red pebble.

@ If all predecessors of a vertex v have a red pebble, a red pebble may
be placed on v.

@ A pebble (red or blue) may be removed at any time.
@ No more than S red pebbles may be used at any time.

@ A blue pebble can be placed on an input vertex at any time

Objective: put a red pebble on each target (not necessary simultaneously)
using a minimum of times rules 1 and 2 (I/O operations)

Pichon, Ugar & Vivien CR15 5/19

Red-Blue Pebble Game for |/Os

Example: FFT graph

I 11

k levels, n = 2 vertices at each level
Minimum number S of red pebbles?
How many |/Os for this minimum number S?

Pichon, Ugar & Vivien CR15 6/19

Hong-Kung Lower Bound Method

Objective: Given a number of red pebbles, give a lower bound on the
number of 1/Os for any pebbling scheme of a graph.

Definition (span)
Given a DAG G, its S-span p(S, G) is the maximum number of vertices of

G that can be pebbled with S pebbles in the black pebble game,
maximized over all initial placements of the S pebbles on G.

Rationale: with large p(S, G), you can compute a lot of G with S pebbles
(for a given starting point)

N
(©
@ @ GD/V Find p(3, G), p(2, G).

Pichon, Ugar & Vivien CR15 7/19

Span of the matrix product

Definition (span)
Given a DAG G, its S-span p(S, G), is the maximum number of vertices of

G that can be pebbled with S pebbles in the black pebble game,
maximized over all initial placements of the S pebbles on G.

Theorem

For every DAG G to compute the product of two N x N matrices in a
regular manner (performing the N3 products), the span is bounded by
p(S, G) < 2SVS for S < N2

Lemma

Let T be a binary (in-)tree representing a computation, with p black
pebbles on some vertices and an unlimited number of available pebbles. At
most p — 1 vertices can be pebbled in the tree without pebbling new
inputs.

Pichon, Ugar & Vivien CR15 8/19

From Span to 1/O Lower Bound

Ti/0(S, G): number of I/0O steps (red <+ blue)

Theorem (Hong & Kung, 1981)

For every pebbling scheme of a DAG G = (V/, E) in the red-blue

pebble-game using at most S red pebbles, the number of 1/0 steps
satisfies the following lower bound:

[T1/0(5,G)/S1p(25, G) = [V| = |Inputs(G)

Recall that for matrix product p(S, G) < 25V/S, hence:
N3 — 22 N3
To> 2~V _o(Z2
e PNGTS (x@)

Pichon, Ugar & Vivien CR15 9/19

Tight Lower Bound for Matrix Product

b+ /M/3
for i=0,— N/b—1do
forj=0,— N/b—1do
for k=0,— N/b—1do
L Simple-Matrix-Multiply(n, C,-b,J-,Affk, B}&)
@ 1/0s of blocked algorithm: 4v/3N3/v/M
@ Previous bound on 1/0s ~ N3/4y/2M
@ Many improvements needed to close the gap
@ Presented here for C < C + AB, square matrices
New operation: Fused Multiply Add
@ Perform c < ¢+ a x b in a single step

e No temporary storage needed (3 inputs, 1 output)

Pichon, Ugar & Vivien CR15 10/19

Step 1: Use Only FMAs (Fused Multiply Add)

Theorem

Any algorithm for the matrix product can be transformed into using only
FMA without increasing the required memory or the number of |/Os.

Transformation:

o If some ¢;j x is computed while ¢;; is not in memory, insert a read
before the multiplication

@ Replace the multiplication by a FMA

@ Remove the read that must occur before the addition
Cij Cjj + Cijk, remove the addition
@ Transform occurrences of ¢;j , into ¢;;

o If ¢ij« and c;; were both in memory in some time-interval, remove
operations with ¢; j in this interval

Pichon, Ugar & Vivien CR15 11/19

Tight Lower Bound for Matrix Product

Step 2: Concentrate on Read Operations

Theorem (Irony, Toledo, Tiskin, 2008)

Using N4 elements of A, Ng elements of B and N¢ elements of C, we can
perform at most \/NaNgN¢ distinct FMAs.

-

Theorem (Discrete Loomis-Whitney Inequality)

Let V be a finite subset of Z3 and Vi, Vs, V3 denote the orthogonal
projections of V' on each coordinate planes, we have

V> < |Vl - Vel - | V4,
RIS

12/19

Tight Lower Bound for Matrix Product

Step 3: Use Phases of R Reads (possibly R # M)

Theorem

During a phase with R reads with memory M, the number of FMAs is
bounded by

Fumir < <3(M + R)>

Number Fpy g of FMAs constrained by:

Fuv+r < vV NaNgNc
0 < Na, Ng, N¢
Na+ Ng+Nc <M+ R

Using Lagrange multipliers, maximal value obtained when Ny = Ng = N¢

Pichon, Ugar & Vivien CR15

13/19

Step 4: Choose R and add write operations

1 3/2
In one phase, number of computations: Fp4r < <3(M + R))

Total volume of reads:

N3 N3
Vreadz\‘ JXRZ(_1>XR
Frm+r Frmsr

Valid for all values of R, maximized when R = 2M:

Viead > 2N /V/M — 2M

Each element of C written at least once: Viyite > N2

Theorem

The total volume of 1/Os is bounded by:

2N3
Viio> " + N2 —2M
I/O-m

Pichon, Ugar & Vivien CR15 14 /19

Extension to the Memory Hierarchy Pebble Game

Generalization for a memory/cache hierarchy of L levels:
@ Level 1: fastest/most limited memory

Level L: slow/unlimited memory

p; available pebbles at level | < L:

Computation steps only with level-1 pebbles

Initialization only with level-L pebbles

Input from level /: if level-/ pebble, put level-(/ — 1) pebble

Output to level /: if level-(/ — 1) pebble, put level-/ pebble

Cumulated number of pebbles up to level /: s, = Zle pi-
Number of inputs from/outputs to level /:

T — @(N?’/« /5171) if 51 < 3N?2
7 e(n?) otherwise

Pichon, Ugar & Vivien CR15 15/19

Extensions and Performance Bounds

Recent Developments of Pebble Games

Restrict to pebbling without recomputation:
@ Add white pebbles with red pebbles when computing
@ White pebbles stay on vertices
@ No computation possible if white pebble already present
@ All nodes must be white-pebbled at the end

This restriction increases the number of red pebbles and |/Os by at most a
log3/2n factor

Towards automatic derivation of lower bounds:
@ Extend bounds for composite graphs
@ Use special min-cuts instead of span
Parallel Red-Blue-White Pebble Game (cf. memory hierarchies)
Still an inspiring model!

Pichon, Ugar & Vivien CR15 16 /19

Extensions and Performance Bounds

Why so much fuss about matrix product?

BLAS: Basic Linear Algebra Subprograms

@ Introduced in the 80s as a standard for LA computations
@ Written first in FORTRAN
°
°

Library provided by the vendor to ease use of new machines
Organized by levels:

o Level 1: vector/vector operations (x - y)
o Level 2: vector/matrix (Ax)
o Level 3: matrix/matrix (ABT, blocked algorithms)

@ Implementations:
e Vendors (MKL from Intel, CuBLAS from NVidia, etc.)
e Automatic Tuning: ATLAS
o GotoBLAS

Matrix product: still a large share of LA computations

Pichon, Ugar & Vivien CR15 17 /19

Extensions and Performance Bounds

Parttion n with blocksize n,

Pastition k with blocksize ke

Paition m with blocksize m

Parttion n with blocksize n,

Partition m with blocksize m,

H-E

Micro-kernel

D+:uﬂmm§

L

D Matrix partition is reused in L3 cache.
D Matrix partition is reused in L2 cache.
[[] Matrix parttion i reused in L1 cache.

Matrix partition is reused in registers.

Pichon, Ugar & Vivien CR15 18/19

Extensions and Performance Bounds

Summary: Performance Bounds & Rooftop Model

Performance [GFLOPS]

J Bound based on bandwidth//
L // Bound based on peak performance
2
1A . Ap‘ps
App,
1/2
14 4 A;’p1
1/4 1/2 1 2 4 8 16 3IZ 6l4 WZlS 2;6 5;2 ' Open"ational‘lnl:ensilty[FLOPS/byte]
Source: Wikipedia, CC-BY-SA-4.0
Computation ceilings Bandwidth ceilings
@ Theoretical peak, @ Cache bandwidth
@ Matrix-Matrix product @ Memory bandwidth
(DGEMM) e NUMA (Non Uniform Memory
o LINPACK (Top 500 ranking) Access)

Pichon, Ugar & Vivien CR15 19/19

	Summary on the (black) pebble game
	Red-Blue Pebble Game for I/Os
	Hong-Kung Lower Bound Method
	Tight Lower Bound for Matrix Product
	Extensions and Performance Bounds

