
Introduction to
Scheduling Under Memory Constraints

and Pebble Game Models

Grégoire Pichon, Bora Uçar & Frédéric Vivien

(Original slides by Loris Marchal)

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: Januray 2023
https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Pichon, Uçar & Vivien CR15 1 / 20

https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/


Introduction and Motivation

Part 1: Introduction and Pebble Game models

1 Introduction and Motivation

2 Link between Algorithm Design and Data Movement

3 (Black) Pebble Game and Memory Minimization
Motivation and rules of the game
Complexity and variants
Pebble game on trees
Space-Time tradeoffs

Pichon, Uçar & Vivien CR15 2 / 20



Introduction and Motivation

Introduction & Motivation

(Fast) Memory: place to store data for computation

Always been a limited resource (4kB in Apollo 11 computer)

Not limited anymore?
(last iPhone: ≥ 64GB, workstation: ≈ 1TB)

But problem size always gets bigger. . .

. . . And the problem is rather a question of speed!

Annual improvements:

Number of flops per chip (computation): 59%
Data movement:

Bandwidth Latency
Network 26% 15%
DRAM 23% 5%

Figures from Getting up to speed: The future of supercomputing, 2005, National
Academies Press (2004 figure based on data on the period 1988-2002)

Pichon, Uçar & Vivien CR15 3 / 20



Introduction and Motivation

Introduction & Motivation

(Fast) Memory: place to store data for computation

Always been a limited resource (4kB in Apollo 11 computer)

Not limited anymore?
(last iPhone: ≥ 64GB, workstation: ≈ 1TB)

But problem size always gets bigger. . .

. . . And the problem is rather a question of speed!

Annual improvements:

Number of flops per chip (computation): 59%
Data movement:

Bandwidth Latency
Network 26% 15%
DRAM 23% 5%

Figures from Getting up to speed: The future of supercomputing, 2005, National
Academies Press (2004 figure based on data on the period 1988-2002)

Pichon, Uçar & Vivien CR15 3 / 20



Introduction and Motivation

Introduction & Motivation

(Fast) Memory: place to store data for computation

Always been a limited resource (4kB in Apollo 11 computer)

Not limited anymore?
(last iPhone: ≥ 64GB, workstation: ≈ 1TB)

But problem size always gets bigger. . .

. . . And the problem is rather a question of speed!

Annual improvements:

Number of flops per chip (computation): 59%
Data movement:

Bandwidth Latency
Network 26% 15%
DRAM 23% 5%

Figures from Getting up to speed: The future of supercomputing, 2005, National
Academies Press (2004 figure based on data on the period 1988-2002)

Pichon, Uçar & Vivien CR15 3 / 20



Introduction and Motivation

Ratio of flops per byte moved

number of flops perform in the time needed to move a byte
computing speed

communication speed

From http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Pichon, Uçar & Vivien CR15 4 / 20

http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/


Introduction and Motivation

Performance balance

Top500 Rank E�ciency Memory (M) Storage Network

’0
9/

06

’0
9/

11

’1
0/

06

’1
0/

11

’1
1/

06

’1
1/

11

’1
2/

06

’1
2/

11

’1
3/

06

’1
3/

11

’1
4/

06

’1
4/

11

’1
5/

06

’1
5/

11

’1
6/

06

’1
6/

11

’1
7/

06

’1
7/

11

’1
8/

06

’1
8/

11

’1
9/

06

’1
9/

11 Rmax Rmax Cap. �BW Cap (�M=1) BW (�M=1) Bisection BW
to Rpeak to Power per Core to Rmax PFS BB PFS BB to �Injection BW

m BlueGene/L 5 0.80 0.21 0.35 1.18 2.60 · 0.0000 · 0.0038
F Roadrunner.1 2 3 0.76 0.44 5.98 0.27 28.56 · 0.0001 · 0.0627
F Roadrunner.2 ∂ 0.76 0.45 5.98 0.27 26.97 · 0.0001 · 0.0593
m Jaguar.1 2 0.77 0.15 2.05 0.34 34.13 · 0.0005 · 0.0072
m Pleiades 4 0.80 0.23 1.00 0.05 139.26 · 0.0017 · ·
m JUGENE 3 4 5 0.82 0.36 0.50 0.98 14.22 · 0.0000 · 0.0046
F Jaguar.2 ∂ ∂ 2 3 3 0.74 0.38 1.07 0.25 32.80 · 0.0004 · 0.0142
m Kraken 3 4 0.81 0.27 1.52 0.23 22.99 · 0.0001 · ·
F Tianhe-1 5 0.47 0.37 1.55 0.79 9.46 · 0.0003 · ·
F Nebulae 2 3 4 4 0.43 0.49 2.22 0.41 2.49 · 0.0001 · ·
F Tsubame-2.0 4 5 5 0.52 0.85 1.34 0.59 59.90 1.72 0.0001 0.0005 1.2291
F Tianhe-1A ∂ 2 2 5 0.55 0.64 2.92 0.25 8.36 · 0.0003 · ·
m Hopper 5 0.82 0.36 1.45 0.41 9.44 · 0.0001 · ·
m K Computer ∂ ∂ 2 3 4 4 4 4 4 4 5 0.93 0.83 2.00 0.46 22.31 8.18 0.0001 0.0002 0.0741
m Sequoia ∂ 2 3 3 3 3 3 3 4 4 5 0.85 2.18 1.00 0.20 36.67 · 0.0004 · 0.1221
m Mira 3 4 5 5 5 5 5 5 0.85 2.18 1.00 0.20 46.67 · 0.0001 · 0.0682
m Super MUC 4 0.91 0.85 2.00 0.29 53.33 · 0.0003 · 0.2778
m JUQUEEN 5 0.85 2.18 1.00 0.20 0.22 · 0.0001 · 0.0112
F Titan ∂ 2 2 2 2 2 2 3 3 4 5 0.65 2.14 2.37 0.20 44.30 · 0.0002 · 1.1158
F Tianhe-2A ∂ ∂ ∂ ∂ ∂ ∂ 2 2 2 2 4 4 4 4 0.61 3.32 8.00 0.07 5.83 · 0.0002 · 0.1918
F SW TaihuLight ∂ ∂ ∂ ∂ 2 3 3 3 0.74 6.05 16.00 0.09 8.00 · 0.0000 · 0.1094
m Cori 5 0.50 3.56 1.66 0.19 27.40 1.83 0.0001 0.0003 0.4814
F Piz Daint 3 3 5 0.78 8.91 2.23 0.06 46.06 · 0.0001 · 0.7703
F Gyoukou 4 0.68 14.17 33.94 0.03 24.67 · 0.0013 · ·
F ABCI 5 0.61 12.06 12.82 0.13 41.32 3.26 0.0004 0.0008 0.6995
F Summit ∂ ∂ ∂ ∂ 0.71 14.67 9.64 0.13 88.59 2.62 0.0001 0.0004 1.0222
F Sierra 3 2 2 2 0.75 12.72 7.52 0.14 110.00 5.06 0.0001 0.0005 0.5120
F Frontera 5 5 0.60 4.27 9.1 0.13 35.4 1.9 0.0001 0.0965 ·

Table 2: System characteristics of 28 supercomputers that have marked top �ve in Top 500 from 2009 to 2019. m and F indicate that the
corresponding supercomputer has homogeneous or heterogeneous architectures, respectively. The color intensity shows the comparison
between values within the corresponding column. A higher ratio in each column is considered to be better.

 0

 10

 20

 30

 40

2011
2012

2013
2014

2015
2016

2017
2018

2019

P
e
rc

e
n
ta

g
e

19
36

53 58 52 52
64

75
90

103 94 86 88
100110

139140140
Trend

Figure 8: The increasing number of heterogeneous supercomput-
ers in Top500 since 2011.

2019. We expect that this increasing trend will continue, particu-
larly for addressing technological limitations (§ 4.1.1) and also for
controlling the power consumption.

Note that the current analysis discussed in this section revisits
some analysis methods from prior studies [12, 18, 19, 26]. Despite
similar analysis methods, we believe it is meaningful to observe the
most up-to-date supercomputing trend. Furthermore, our analysis
in Section 4.1 encompasses all 500 supercomputers in the Top500
lists.

4.2 Balance Trends in Recent Supercomputers
In this section, we perform a deeper analysis on the performance
trend in recent top supercomputers. Speci�cally, we focus on su-
percomputers that have ranked in the top �ve positions on the
Top500 listings in the last decade, i.e., between 2009 and 2019. As
summarized in Table 2, our target supercomputers consist of 16
heterogeneous (F) and 12 traditional (m) supercomputers.

4.2.1 Overall System E�iciency. Figures 9(a) and (b) show the
performance e�ciency (Rmax:Rpeak) and power e�ciency (Rmax:Power)
of these supercomputers. We �rst observe that heterogeneous sys-
tems dominate the architectural trend in the top supercomputers.
Particularly, since November 2017, all top �ve supercomputers are
heterogeneous, indicating that the increasing popularity of the het-
erogeneous architecture (§ 4.1.6). Furthermore, in Figure 9(a), we
notice that heterogeneous systems tend to exhibit a lower perfor-
mance e�ciency, i.e., achieving less than 80% of the theoretical

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

R
m

a
x/

R
p
e
a
k

 0

 3

 6

 9

 12

 15

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

G
F

lo
p
s/

W
a
tt Traditional

Heterogeneous
No.1

(a) Performance e�ciency. (b) Power e�ciency.

Figure 9: Trends of performance and power e�ciency in recent top
�ve supercomputers. The heterogeneous architecture clearly im-
prove the power e�ciency but also imposes challenges to increase
the performance e�ciency.

peak performance (Rpeak). In contrast, Figure 9(b) shows that the
power e�ciency of heterogeneous systems far exceed that of tra-
ditional systems, especially since 2017. Speci�cally, the average
power e�ciency of the heterogeneous machines (5.5 GFlops/W)
is about �ve times higher than the average power e�ciency of
the traditional machines (1.1 GFlops/W). Our observation clearly
demonstrates the bene�t, i.e., energy e�ciency, and also challenges,
i.e., technical obstacles to realize the potential performance [12], of
the heterogeneous architecture.

 0

 0.5

 1

 1.5

 2

 2.5

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

G
B

/C
o
re

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

(B
/s

)/
F

lo
p
s
Traditional

Heterogeneous
No.1

(a) Memory capacity per core. (b) Memory bandwidth per Flops.

Figure 10: Performance balance in system memory. Despite the
increasing performance of the memory system, the per Flops mem-
ory bandwidth has decreased due to the growth of the processing
power.

4.2.2 System Memory. Next, we analyze the performance trend
in the memory subsystem. For heterogeneous systems, the mem-
ory capacity and bandwidth are the sums of the DRAM and HBM
capacity and bandwidth. First, Figure 10(a) shows the trend in the

5

Performance balance between the aggregate memory bandwidth and the
peak processing power of supercomputers from the Top500 list
From “An Analysis of System Balance and Architectural Trends Based on Top500

Supercomputers”

https://people.cs.vt.edu/~butta/docs/HPCAsia2021-top500.pdf

Pichon, Uçar & Vivien CR15 5 / 20

https://people.cs.vt.edu/~butta/docs/HPCAsia2021-top500.pdf


Introduction and Motivation

Bypass the memory wall

Time to move the data > Time to compute on the data
Similar problem in microprocessor design: “memory wall”
Traditional workaround: add a faster but smaller “cache” memory
Now a hierarchy of caches !

Pichon, Uçar & Vivien CR15 6 / 20



Introduction and Motivation

Computing with caches

Limited amount of fast cache

Performance sensitive to data locality

Optimize data reuse

Avoid data movements between memory and cache(s)
(time- and energy-consuming)

Pichon, Uçar & Vivien CR15 7 / 20



Link between Algorithm Design and Data Movement

Part 1: Introduction and Pebble Game models

1 Introduction and Motivation

2 Link between Algorithm Design and Data Movement

3 (Black) Pebble Game and Memory Minimization
Motivation and rules of the game
Complexity and variants
Pebble game on trees
Space-Time tradeoffs

Pichon, Uçar & Vivien CR15 8 / 20



Link between Algorithm Design and Data Movement

Example: matrix-matrix product

Consider two square matrices A and B (size n × n)

Compute generalized matrix product: C ← C + AB

Simple-Matrix-Multiply(n,C ,A,B)
for i = 0→ n − 1 do

for j = 0→ n − 1 do
for k = 0→ n − 1 do

Ci ,j = Ci ,j + Ai ,kBk,j

Assume a simple two-level memory model:

Slow but infinite disk storage
(where A and B are originally stored)

Fast and limited memory (size M)

Objective: limit data movement between disk/memory

NB: also applies to other two-level systems (memory/cache, etc.)

Pichon, Uçar & Vivien CR15 9 / 20



Link between Algorithm Design and Data Movement

Simple algorithm analysis

Simple-Matrix-Multiply(n,C ,A,B)
for i = 0→ n − 1 do

for j = 0→ n − 1 do
for k = 0→ n − 1 do

Ci ,j = Ci ,j + Ai ,kBk,j

Assume the memory cannot store half of a matrix: M < n2/2

Question: How many data movement in this algorithm?

Answer:

All elements of B accessed during one iteration of the outer loop

At most half of B stays in memory

At least n2/2 elements must be read per iteration of the outer loop

At least n3/2 read for the entire algorithm

Same order of magnitude as computations: Ω(n3)

Very bad data reuse / Question: Can we do better? How?

Pichon, Uçar & Vivien CR15 10 / 20



Link between Algorithm Design and Data Movement

Simple algorithm analysis

Simple-Matrix-Multiply(n,C ,A,B)
for i = 0→ n − 1 do

for j = 0→ n − 1 do
for k = 0→ n − 1 do

Ci ,j = Ci ,j + Ai ,kBk,j

Assume the memory cannot store half of a matrix: M < n2/2

Question: How many data movement in this algorithm?

Answer:

All elements of B accessed during one iteration of the outer loop

At most half of B stays in memory

At least n2/2 elements must be read per iteration of the outer loop

At least n3/2 read for the entire algorithm

Same order of magnitude as computations: Ω(n3)

Very bad data reuse / Question: Can we do better? How?

Pichon, Uçar & Vivien CR15 10 / 20



Link between Algorithm Design and Data Movement

Blocked matrix-matrix product

Divide each matrix into blocks of size b × b:
Ab
i ,k is the block of A at position (i , k)

Perform “coarse-grain” matrix product on blocks

Perform each block product with previous algorithms

Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0→ n/b − 1 do
for j = 0→ n/b − 1 do

for k = 0→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

Pichon, Uçar & Vivien CR15 11 / 20



Link between Algorithm Design and Data Movement

Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

Question: Number of data movements?

Iteration of inner loop: 3 blocks of size b × b =
√
M/3

3
= M/3

→ fits in memory
At most M +M/3 (O(M)) data movements for each inner loop
(reading/writing)

Number of inner iterations: (n/b)3 =
(
n/

√
M/3

)3
= O(n3/M

√
M)

Total number of data movements: O(n3/
√
M)

Question: Can we do (significantly) better? Answer: next lesson!

Pichon, Uçar & Vivien CR15 12 / 20



Link between Algorithm Design and Data Movement

Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

Question: Number of data movements?

Iteration of inner loop: 3 blocks of size b × b =
√

M/3
3
= M/3

→ fits in memory
At most M +M/3 (O(M)) data movements for each inner loop
(reading/writing)

Number of inner iterations: (n/b)3 =
(
n/

√
M/3

)3
= O(n3/M

√
M)

Total number of data movements: O(n3/
√
M)

Question: Can we do (significantly) better? Answer: next lesson!

Pichon, Uçar & Vivien CR15 12 / 20



Link between Algorithm Design and Data Movement

Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

Question: Number of data movements?

Iteration of inner loop: 3 blocks of size b × b =
√

M/3
3
= M/3

→ fits in memory
At most M +M/3 (O(M)) data movements for each inner loop
(reading/writing)

Number of inner iterations: (n/b)3 =
(
n/

√
M/3

)3
= O(n3/M

√
M)

Total number of data movements: O(n3/
√
M)

Question: Can we do (significantly) better?

Answer: next lesson!

Pichon, Uçar & Vivien CR15 12 / 20



Link between Algorithm Design and Data Movement

Blocked matrix-matrix product – Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b ←

√
M/3

for i = 0,→ n/b − 1 do
for j = 0,→ n/b − 1 do

for k = 0,→ n/b − 1 do
Simple-Matrix-Multiply(n,Cb

i ,j ,A
b
i ,k ,B

b
k,j)

Question: Number of data movements?

Iteration of inner loop: 3 blocks of size b × b =
√

M/3
3
= M/3

→ fits in memory
At most M +M/3 (O(M)) data movements for each inner loop
(reading/writing)

Number of inner iterations: (n/b)3 =
(
n/

√
M/3

)3
= O(n3/M

√
M)

Total number of data movements: O(n3/
√
M)

Question: Can we do (significantly) better? Answer: next lesson!
Pichon, Uçar & Vivien CR15 12 / 20



(Black) Pebble Game and Memory Minimization

Part 1: Introduction and Pebble Game models

1 Introduction and Motivation

2 Link between Algorithm Design and Data Movement

3 (Black) Pebble Game and Memory Minimization
Motivation and rules of the game
Complexity and variants
Pebble game on trees
Space-Time tradeoffs

Pichon, Uçar & Vivien CR15 13 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

Pebble Game and Register Minimization

First model introduced in the 70s
Motivation: limit the usage of registers for a computation (scarce
resource, typically 16/32 for CPUs)
Registers: at the top of the memory hierarchy

Restrict to straight-line program:
control flow independent from input data
Modeled as Directed Acyclic Graph:

7 + (5− z)× (1 + x)− ((1 + x − t)/(2 + z) + v)

t

+

7

+

v

−
2 z

5 1z x

×

/

+

+

−

−

Pichon, Uçar & Vivien CR15 14 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .

×

+

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

−

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .
−

+

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .

+

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

−

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

−

+

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .
−

+

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

−

+

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

−

+

7

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .

+

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

−

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

−

+

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Motivation and rules of the game

(Black) Pebble Game – Rules

1 A pebble may be removed from a vertex at any time.
2 A pebble may be placed on a source node at any time.
3 If all (direct) predecessors of an unpebbled vertex v are pebbled, a

pebble may be placed on v .

7

+

/

+

/

v

×

− −
2 z

5 1z x u t

×

−

+

Analogy with register allocation:

Rule 2: Load in register
Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of
pebbles

Pichon, Uçar & Vivien CR15 15 / 20



(Black) Pebble Game and Memory Minimization Complexity and variants

(Black) Pebble Game – Complexity and variants

Progressive pebble game:

Forbid pebbling twice the same vertex

NP-Hard

More general problem with re-computation:

PSpace-complete

Variant with pebble shifting:

Rule 3 → If all predecessors of an unpebbled vertex v are pebbled, a
pebble may be shifted from a predecessor to v .

Decrease the minimum number of pebbles required for a graph by at
most one (may induce large number of recomputations)

Pichon, Uçar & Vivien CR15 16 / 20



(Black) Pebble Game and Memory Minimization Pebble game on trees

Complete binary tree of depth k = 4464 Chapter 10 Space–Time Tradeoffs Models of Computation

31

15 30

7 14 29 25

3 6 13 18 28 21 24

1 2 4 5 8

10

17 26 27 19 20 22 23169 11 12

Figure 10.2 A complete balanced binary tree T (4) of depth 4 on 16 inputs. At least five
pebbles are needed to pebble it.

The binary tree of Fig. 10.2 can be pebbled with five pebbles by pebbling the vertices in
the order shown. Five pebbles are needed at the time when vertex 27 is pebbled. After one
pebble is moved to vertex 30, the two outputs of the FFT of Fig. 10.1 to which vertices 15 and
30 are attached can be pebbled. This tree-pebbling strategy can be repeated on all remaining
outputs. It is a general strategy for pebbling complete balanced binary trees.

This pebbling strategy, explained in detail in the next section, demonstrates that an FFT
graph on n = 2k inputs can be pebbled with no more pebbles than are needed to pebble the
trees with n leaves contained within it, namely, k + 1. In the next section we show that this
is the minimum number of pebbles needed to pebble a complete balanced binary tree on 2k

leaves. This FFT pebbling strategy for the graph in Fig. 10.1 pebbles each vertex on the third
and fourth levels once, each vertex on the second level twice, and each vertex on the first level
four times. It is clear that inputs must be repebbled if the minimum number of pebbles is used.
This is an example of space–time tradeoff. We shall derive a lower bound on the exchange of
space for time for this problem.

In the next section we also examine the minimum space required to pebble graphs. In the
subsequent section we describe a graph that exhibits an extreme tradeoff. This graph requires
a pebbling time exponential in the size of the graph when the minimum number of pebbles is
used but can be pebbled with one move per vertex if one more pebble is available.

After studying extreme tradeoffs we define a flow property of functions that, if satisfied,
implies a lower bound on the product (S +1)T (or a related expression) involving the space S
and time T needed to compute such functions. This test is used to show that many standard
algorithms are optimal with respect to their use of space and time.

10.2 Space Lower Bounds
In this section we derive lower bounds on the minimum space Smin(G) needed to pebble a
graph G for balanced binary trees, pyramids, and FFT graphs, a representative set of graphs.

Theorem

Any pebbling strategy (with or without recomputation, without shifting)
for the complete balanced binary tree of depth k ≥ 1 uses at least k + 2
pebbles and 2k+1 − 1 steps. There exists a strategy reaching both bounds.

NB: All proofs on the board will be made available online.
Pichon, Uçar & Vivien CR15 17 / 20



(Black) Pebble Game and Memory Minimization Pebble game on trees

General trees

Lemma

Depth-First Traversal are dominant

Depth-First: Totally pebble a subtree, remove all pebbles except on its
root, before starting a sibling subtree.

Theorem

An optimal solution is obtained by ordering subtrees by non-increasing
value of P(i), where the peak P(v) of the subtree rooted at v is
recursively defined by:

P(v) =

{
1 if v is a leaf
max(k + 1,maxi=1...k P(ci ) + i − 1)

where c1, . . . ck are the children of v ordered such that
P(c1) ≥ P(c2) ≥ · · · ≥ P(ck).

Pichon, Uçar & Vivien CR15 18 / 20



(Black) Pebble Game and Memory Minimization Space-Time tradeoffs

Space-Time tradeoffs – FFT example

Fast-Fourrier Transform

Recursive graph based on the “exchange graph” with 2 inputs and 2
outputsc⃝John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

FFT graph with 8 input/output vertices (depth k = 3)
n = 2k vertices at each level

Pichon, Uçar & Vivien CR15 19 / 20



(Black) Pebble Game and Memory Minimization Space-Time tradeoffs

Space-Time tradeoffs – FFT example
c⃝John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

Strategy 1:

Pebble one tree up to one output, then start over
(variant: pebble two outputs before re-starting)
Uses k + 2 pebbles
(minimum value since it contains binary tree of depth k)
Large number of recomputations

Strategy 2:

Pebble level by level
Requires 2n = 2k+1 pebbles
No recomputations (minimum number of steps)
Pichon, Uçar & Vivien CR15 20 / 20


	Introduction and Motivation
	Link between Algorithm Design and Data Movement
	(Black) Pebble Game and Memory Minimization
	Motivation and rules of the game
	Complexity and variants
	Pebble game on trees
	Space-Time tradeoffs


