Introduction to
Scheduling Under Memory Constraints
and Pebble Game Models

Grégoire Pichon, Bora Ucar & Frédéric Vivien

(Original slides by Loris Marchal)

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: Januray 2023
https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Pichon, Ugar & Vivien CR15 1/20

https://gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Introduction and Motivation

Part 1: Introduction and Pebble Game models

© Introduction and Motivation

Pichon, Ugar & Vivien CR15 2/20

Introduction and Motivation

Introduction & Motivation

o (Fast) Memory: place to store data for computation
@ Always been a limited resource (4kB in Apollo 11 computer)

@ Not limited anymore?
(last iPhone: > 64GB, workstation: ~ 1TB)

Pichon, Ugar & Vivien CR15

3/20

Introduction and Motivation

Introduction & Motivation

o (Fast) Memory: place to store data for computation
@ Always been a limited resource (4kB in Apollo 11 computer)

@ Not limited anymore?
(last iPhone: > 64GB, workstation: ~ 1TB)

@ But problem size always gets bigger. ..

Pichon, Ugar & Vivien CR15 3/20

Introduction & Motivation

o (Fast) Memory: place to store data for computation
@ Always been a limited resource (4kB in Apollo 11 computer)
@ Not limited anymore?
(last iPhone: > 64GB, workstation: ~ 1TB)
@ But problem size always gets bigger. ..
... And the problem is rather a question of speed!
@ Annual improvements:

o Number of flops per chip (computation): 59%

o Data movement:
| Bandwidth | Latency

Network 26% 15%

DRAM 23% 5%

Figures from Getting up to speed: The future of supercomputing, 2005, National
Academies Press (2004 figure based on data on the period 1988-2002)

Pichon, Ucar & Vivien CR15 3/20

Ratio of flops per byte moved

FLOP per Byte

Theoretical Peak Floating Point Operations per Byte, Single Precision

‘ S

: Lo

: o

: S
o

\&
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, A
! Xédri Phi 7120 (KNC) ?“-\'ﬂ";
e

0 '
R :
: INTEL Xeon CPUs =—fe—
NVIDIA Geforce GPUs —Jill—
! | AMD Radeon GPUs —{@)—
: INTEL Xeon Phis ——age—
2008 2010 2012 2014 2016

End of Year

@ number of flops perform in the time needed to move a byte

computing speed

communication speed

From http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-oyver-time/

Pichon, Ugar & Vivien CR15

4/20

http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Introduction and Motivation

Performance balance

- 1.2 to Traditional ©
o 1looo Heterogeneous
U_Cjo.sf . No.1
= 0.6 | s
Q04 | OO0OO0OOOOOOO
m .
— 0.2 PeeeOGeOGS
0 O
8 O ~ N OO - IO O I~ 0 O
O O O O O O O O o O o
ANl AN AN AN AN AN AN AN AN AN N

Performance balance between the aggregate memory bandwidth and the
peak processing power of supercomputers from the Top500 list

From “An Analysis of System Balance and Architectural Trends Based on Top500
Supercomputers”
https://people.cs.vt.edu/~butta/docs/HPCAsia2021-top500.pdf

Pichon, Ugar & Vivien CR15 5/20

https://people.cs.vt.edu/~butta/docs/HPCAsia2021-top500.pdf

Introduction and Motivation

Bypass the memory wall

Time to move the data > Time to compute on the data

Similar problem in microprocessor design: “memory wall”
Traditional workaround: add a faster but smaller “cache” memory
Now a hierarchy of caches !

CPU Core

L1 Cache (on
chip, banked)

L2 Cache Unified

L3 Cache (Unified)

Main Memory

Pichon, Ugar & Vivien CR15 6/20

Introduction and Motivation

Computing with caches

Limited amount of fast cache
Performance sensitive to data locality

Optimize data reuse

Avoid data movements between memory and cache(s)
(time- and energy-consuming)

Pichon, Ugar & Vivien CR15 7/20

Link between Algorithm Design and Data Movement

Part 1: Introduction and Pebble Game models

© Link between Algorithm Design and Data Movement

Pichon, Ugar & Vivien CR15 8/20

Link between Algorithm Design and Data Movement

Example: matrix-matrix product

o Consider two square matrices A and B (size n X n)
@ Compute generalized matrix product: C «+ C + AB
Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—1do
forj=0—n—-1do
for k=0—n—1do
| Gij=GCij+ AikBxj

Assume a simple two-level memory model:

@ Slow but infinite disk storage
(where A and B are originally stored)

e Fast and limited memory (size M)
Objective: limit data movement between disk/memory
NB: also applies to other two-level systems (memory/cache, etc.)
CR15 9/20

Link between Algorithm Design and Data Movement

Simple algorithm analysis

Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—-1do
for j=0—n—-1do
for k=0—n—1do
L | Gij=Gij+ AikBu,

@ Assume the memory cannot store half of a matrix: M < n?/2
@ Question: How many data movement in this algorithm?

Pichon, Ugar & Vivien CR15 10 /20

Link between Algorithm Design and Data Movement

Simple algorithm analysis

Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—-1do
for j=0—n—-1do
for k=0—n—1do
L | Gij=Gij+ AikBu,

@ Assume the memory cannot store half of a matrix: M < n?/2
@ Question: How many data movement in this algorithm?

Answer:
@ All elements of B accessed during one iteration of the outer loop
@ At most half of B stays in memory
@ At least n?/2 elements must be read per iteration of the outer loop
o At least n3/2 read for the entire algorithm
o Same order of magnitude as computations: Q(n?)
@ Very bad data reuse ® Question: Can we do better? How?

Pichon, Ugar & Vivien CR15 10 /20

Link between Algorithm Design and Data Movement

Blocked matrix-matrix product

o Divide each matrix into blocks of size b x b:
AP, is the block of A at position (i, k)
@ Perform ‘“coarse-grain” matrix product on blocks

@ Perform each block product with previous algorithms

Blocked-Matrix-Multiply(n,A,B,C)
b+« \/M/3
for i=0—n/b—1do
for j=0— n/b—1do
for k=0— n/b—1do
L Simple-Matrix-Multiply(n, C? Aﬁk,Bf,j)

ig?

Pichon, Ugar & Vivien CR15 11/20

Link between Algorithm Design and Data Movement

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
for i=0,—n/b—1do
for j=0,—n/b—1do
for k=0,— n/b—1 do
L Simple-Matrix-Multiply(n, C2;, AP B/(’J)

ijr ko

Question: Number of data movements?

Pichon, Ugar & Vivien CR15

12 /20

Link between Algorithm Design and Data Movement

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
for i=0,—n/b—1do
for j=0,—n/b—1do
for k=0,— n/b—1do
L Simple-Matrix-Multiply(n, C2;, AP Bb)

i ko
Question: Number of data movements?

o lteration of inner loop: 3 blocks of size b x b= \/M/33 =M/3
— fits in memory

e At most M + M/3 (O(M)) data movements for each inner loop
(reading/writing)

e Number of inner iterations: (n/b)3 = (n/\/7) O(n®/Mv/'M)

o Total number of data movements: O(n3/v/M)

Pichon, Ugar & Vivien CR15 12 /20

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
for i=0,—n/b—1do

for j=0,—n/b—1do

L for k=0,— n/b—1do

L Simple-Matrix-Multiply(n, C,?J,A,k,Bb)

Question: Number of data movements?
. . . 3
o lIteration of inner loop: 3 blocks of size b x b=+/M/3" = M/3

— fits in memory

e At most M + M/3 (O(M)) data movements for each inner loop
(reading/writing)

o Number of inner iterations: (n/b)3 = (n/\/) O(n*/MvV/'M)
o Total number of data movements: O(n3/v/M)
Question: Can we do (significantly) better?

Pichon, Ucar & Vivien CR15 12 /20

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
for i=0,—n/b—1do

for j=0,—n/b—1do

L for k=0,— n/b—1do

L Simple-Matrix-Multiply(n, C,?J,A,k,Bb)

Question: Number of data movements?
. . . 3
o lIteration of inner loop: 3 blocks of size b x b=+/M/3" = M/3

— fits in memory

e At most M + M/3 (O(M)) data movements for each inner loop
(reading/writing)

o Number of inner iterations: (n/b)3 = (n/\/) O(n*/MvV/'M)
o Total number of data movements: O(n3/v/M)
Question: Can we do (significantly) better? Answer: next lesson!

Pichon, Ugar & Vivien CR15 12 /20

(Black) Pebble Game and Memory Minimization

Part 1: Introduction and Pebble Game models

© (Black) Pebble Game and Memory Minimization

Pichon, Ugar & Vivien CR15 13 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game

Pebble Game and Register Minimization

@ First model introduced in the 70s

@ Motivation: limit the usage of registers for a computation (scarce
resource, typically 16/32 for CPUs)

@ Registers: at the top of the memory hierarchy

Restrict to straight-line program:

control flow independent from input data

@ Modeled as Directed Acyclic Graph:
T+06-2)x1+x)—((14+x—-1t)/(2+2)+v)

Pichon, Ugar & Vivien CR15 14 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/
céé é&éé

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/fﬁ

ot @ééa@ééa

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/fﬁ

@ééa@ééa@ééa

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/fﬁ

@ééa@ééa@ééa

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/fﬁ

b @ééa@ééa

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/fﬁ

b @ééa@ééa

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/%

b @ééa@ééa

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/%

b @ééa@ééa

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

®/ ® %\@
2 X R

Pichon, Ugar & Vivien CR15 15 /20

(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.

@/R

6 @ééa@ééa

Analogy with register allocation:
@ Rule 2: Load in register
@ Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of

pebbles
CR15 15 /20

Complexiy and variants
(Black) Pebble Game — Complexity and variants

Progressive pebble game:
@ Forbid pebbling twice the same vertex
e NP-Hard

More general problem with re-computation:

@ PSpace-complete

Variant with pebble shifting:

@ Rule 3 — If all predecessors of an unpebbled vertex v are pebbled, a
pebble may be shifted from a predecessor to v.

@ Decrease the minimum number of pebbles required for a graph by at
most one (may induce large number of recomputations)

Pichon, Ugar & Vivien CR15 16 / 20

IR CIEE T
Complete binary tree of depth kK = 4

Theorem

Any pebbling strategy (with or without recomputation, without shifting)
for the complete balanced binary tree of depth k > 1 uses at least k + 2
pebbles and 25t — 1 steps. There exists a strategy reaching both bounds.

NB: All proofs on the board will be made available-online.
CR15 17 /20

(CIES RS EREEEEN MY SR VGG IPEIN Pebble game on trees

General trees

Lemma

Depth-First Traversal are dominant

Depth-First: Totally pebble a subtree, remove all pebbles except on its
root, before starting a sibling subtree.

Theorem

An optimal solution is obtained by ordering subtrees by non-increasing
value of P(i), where the peak P(v) of the subtree rooted at v is
recursively defined by:

P(v) = 1 if vis a leaf
| max(k +1,maxj—1. x P(¢)) +i—1)

where ¢, . .. ¢, are the children of v ordered such that
P(Cl) Z P(Cz) Z 2 P(Ck).

Pichon, Ugar & Vivien CR15 18 /20

el
Space-Time tradeoffs — FFT example

o Fast-Fourrier Transform

@ Recursive graph based on the “exchange graph” with 2 inputs and 2
outputs

FFT graph with 8 input/output vertices (depth k = 3)
n = 2K vertices at each level

Pichon, Ugar & Vivien CR15 19 /20

el
Space-Time tradeoffs — FFT example

Strategy 1:
@ Pebble one tree up to one output, then start over
(variant: pebble two outputs before re-starting)
@ Uses k + 2 pebbles
(minimum value since it contains binary tree of depth k)
@ Large number of recomputations
Strategy 2:
@ Pebble level by level
@ Requires 2n = 2K+ pebbles

@ No recomputations (minimum number of steps)
Pichon, Ugar & Vivien CR15 20/20

	Introduction and Motivation
	Link between Algorithm Design and Data Movement
	(Black) Pebble Game and Memory Minimization
	Motivation and rules of the game
	Complexity and variants
	Pebble game on trees
	Space-Time tradeoffs

