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o (Fast) Memory: place to store data for computation
@ Always been a limited resource (4kB in Apollo 11 computer)
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Introduction & Motivation

o (Fast) Memory: place to store data for computation
@ Always been a limited resource (4kB in Apollo 11 computer)
@ Not limited anymore?
(last iPhone: > 64GB, workstation: ~ 1TB)
@ But problem size always gets bigger. ..
... And the problem is rather a question of speed!
@ Annual improvements:

o Number of flops per chip (computation): 59%

o Data movement:
| Bandwidth | Latency

Network 26% 15%

DRAM 23% 5%

Figures from Getting up to speed: The future of supercomputing, 2005, National
Academies Press (2004 figure based on data on the period 1988-2002)
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Ratio of flops per byte moved

FLOP per Byte

Theoretical Peak Floating Point Operations per Byte, Single Precision
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@ number of flops perform in the time needed to move a byte

computing speed

communication speed

From http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-oyver-time/
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Introduction and Motivation

Performance balance
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Performance balance between the aggregate memory bandwidth and the
peak processing power of supercomputers from the Top500 list

From “An Analysis of System Balance and Architectural Trends Based on Top500
Supercomputers”
https://people.cs.vt.edu/~butta/docs/HPCAsia2021-top500.pdf
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Introduction and Motivation

Bypass the memory wall

Time to move the data > Time to compute on the data

Similar problem in microprocessor design: “memory wall”
Traditional workaround: add a faster but smaller “cache” memory
Now a hierarchy of caches !

CPU Core

L1 Cache (on
chip, banked)

L2 Cache Unified

L3 Cache (Unified)

Main Memory
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Introduction and Motivation

Computing with caches

Limited amount of fast cache
Performance sensitive to data locality

Optimize data reuse

Avoid data movements between memory and cache(s)
(time- and energy-consuming)
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Link between Algorithm Design and Data Movement

Example: matrix-matrix product

o Consider two square matrices A and B (size n X n)
@ Compute generalized matrix product: C «+ C + AB
Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—1do
forj=0—n—-1do
for k=0—n—1do
| Gij=GCij+ AikBxj

Assume a simple two-level memory model:

@ Slow but infinite disk storage
(where A and B are originally stored)

e Fast and limited memory (size M)
Objective: limit data movement between disk/memory
NB: also applies to other two-level systems (memory/cache, etc.)
CR15 9/20



Link between Algorithm Design and Data Movement

Simple algorithm analysis

Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—-1do
for j=0—n—-1do
for k=0—n—1do
L | Gij=Gij+ AikBu,

@ Assume the memory cannot store half of a matrix: M < n?/2
@ Question: How many data movement in this algorithm?
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Link between Algorithm Design and Data Movement

Simple algorithm analysis

Simple-Matrix-Multiply(n, C, A, B)
fori=0—n—-1do
for j=0—n—-1do
for k=0—n—1do
L | Gij=Gij+ AikBu,

@ Assume the memory cannot store half of a matrix: M < n?/2
@ Question: How many data movement in this algorithm?

Answer:
@ All elements of B accessed during one iteration of the outer loop
@ At most half of B stays in memory
@ At least n?/2 elements must be read per iteration of the outer loop
o At least n3/2 read for the entire algorithm
o Same order of magnitude as computations: Q(n?)
@ Very bad data reuse ®  Question: Can we do better? How?
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Link between Algorithm Design and Data Movement

Blocked matrix-matrix product

o Divide each matrix into blocks of size b x b:
AP, is the block of A at position (i, k)
@ Perform ‘“coarse-grain” matrix product on blocks

@ Perform each block product with previous algorithms

Blocked-Matrix-Multiply(n,A,B,C)
b+« \/M/3
for i=0—n/b—1do
for j=0— n/b—1do
for k=0— n/b—1do
L Simple-Matrix-Multiply(n, C? Aﬁk,Bf,j)

ig?
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Link between Algorithm Design and Data Movement

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
for i=0,—n/b—1do
for j=0,—n/b—1do
for k=0,— n/b—1 do
L Simple-Matrix-Multiply(n, C2;, AP B/(’J)

ijr ko

Question: Number of data movements?
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Link between Algorithm Design and Data Movement

Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
for i=0,—n/b—1do
for j=0,—n/b—1do
for k=0,— n/b—1do
L Simple-Matrix-Multiply(n, C2;, AP Bb )

i ko
Question: Number of data movements?

o lteration of inner loop: 3 blocks of size b x b= \/M/33 =M/3
— fits in memory

e At most M + M/3 (O(M)) data movements for each inner loop
(reading/writing)

e Number of inner iterations: (n/b)3 = (n/\/7) O(n®/Mv/'M)

o Total number of data movements: O(n3/v/M)

Pichon, Ugar & Vivien CR15 12 /20



Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
for i=0,—n/b—1do

for j=0,—n/b—1do

L for k=0,— n/b—1do

L Simple-Matrix-Multiply(n, C,?J,A,k,Bb )
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. . . 3
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— fits in memory
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Blocked matrix-matrix product — Analysis

Blocked-Matrix-Multiply(n,A,B,C)
b+ \/M/3
for i=0,—n/b—1do

for j=0,—n/b—1do

L for k=0,— n/b—1do

L Simple-Matrix-Multiply(n, C,?J,A,k,Bb )

Question: Number of data movements?
. . . 3
o lIteration of inner loop: 3 blocks of size b x b=+/M/3" = M/3

— fits in memory

e At most M + M/3 (O(M)) data movements for each inner loop
(reading/writing)

o Number of inner iterations: (n/b)3 = (n/\/ ) O(n*/MvV/'M)
o Total number of data movements: O(n3/v/M)
Question: Can we do (significantly) better? Answer: next lesson!
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(Black) Pebble Game and Memory Minimization

Part 1: Introduction and Pebble Game models

© (Black) Pebble Game and Memory Minimization
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(Black) Pebble Game and Memory Minimization Motivation and rules of the game

Pebble Game and Register Minimization

@ First model introduced in the 70s

@ Motivation: limit the usage of registers for a computation (scarce
resource, typically 16/32 for CPUs)

@ Registers: at the top of the memory hierarchy

Restrict to straight-line program:

control flow independent from input data

@ Modeled as Directed Acyclic Graph:
T+06-2)x1+x)—((14+x—-1t)/(2+2)+v)
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(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.
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(Black) Pebble Game and Memory Minimization Motivation and rules of the game
(Black) Pebble Game — Rules

@ A pebble may be removed from a vertex at any time.

© A pebble may be placed on a source node at any time.

@ If all (direct) predecessors of an unpebbled vertex v are pebbled, a
pebble may be placed on v.
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Analogy with register allocation:
@ Rule 2: Load in register
@ Rule 3: Compute new value (in new register)

Objective: Pebble all vertices at least once using a minimum number of

pebbles
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Complexiy and variants
(Black) Pebble Game — Complexity and variants

Progressive pebble game:
@ Forbid pebbling twice the same vertex
e NP-Hard

More general problem with re-computation:

@ PSpace-complete

Variant with pebble shifting:

@ Rule 3 — If all predecessors of an unpebbled vertex v are pebbled, a
pebble may be shifted from a predecessor to v.

@ Decrease the minimum number of pebbles required for a graph by at
most one (may induce large number of recomputations)
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IR CIEE T
Complete binary tree of depth kK = 4

Theorem

Any pebbling strategy (with or without recomputation, without shifting)
for the complete balanced binary tree of depth k > 1 uses at least k + 2
pebbles and 25t — 1 steps. There exists a strategy reaching both bounds.

NB: All proofs on the board will be made available-online.
CR15 17 /20



(CIES RS EREEEEN MY SR VGG IPEIN  Pebble game on trees

General trees

Lemma

Depth-First Traversal are dominant

Depth-First: Totally pebble a subtree, remove all pebbles except on its
root, before starting a sibling subtree.

Theorem

An optimal solution is obtained by ordering subtrees by non-increasing
value of P(i), where the peak P(v) of the subtree rooted at v is
recursively defined by:

P(v) = 1 if vis a leaf
| max(k +1,maxj—1. x P(¢)) +i—1)

where ¢, . .. ¢, are the children of v ordered such that
P(Cl) Z P(Cz) Z 2 P(Ck).
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el
Space-Time tradeoffs — FFT example

o Fast-Fourrier Transform

@ Recursive graph based on the “exchange graph” with 2 inputs and 2
outputs

FFT graph with 8 input/output vertices (depth k = 3)
n = 2K vertices at each level
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el
Space-Time tradeoffs — FFT example

Strategy 1:
@ Pebble one tree up to one output, then start over
(variant: pebble two outputs before re-starting)
@ Uses k + 2 pebbles
(minimum value since it contains binary tree of depth k)
@ Large number of recomputations
Strategy 2:
@ Pebble level by level
@ Requires 2n = 2K+ pebbles

@ No recomputations (minimum number of steps)
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