
Trade-offs between execution time and
memory consumption when using low-rank

compression

Grégoire Pichon, Bora Uçar & Frédéric Vivien

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: December 2022
gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

1/22 CR15

gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/


Context
A new strategy

Experiments

Outline

1 Context

2 A new strategy

3 Experiments

2/22 CR15



Context
A new strategy

Experiments

BLR compression – Symbolic factorization

Full-rank matrix. Block Low-Rank matrix.

3/22 CR15



Context
A new strategy

Experiments

MM vs JIT: DAG of tasks

(1,2)

(1,2)

(3,2)(2,2)

(1,3)

(1,3)

(2,3) (3,3)

(2,1)

(2,1)

(3,1)

(3,1)

(2,3)

(2,3)

(3,2)

(3,2)

(1,1)

(2,2)

(3,3)

(3,3)

(1,1)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)(3,3)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)

(3,3)

(2,3)(3,2)

(3,3)

Minimal Memory

Compress all off-diagonal blocks
before starting the factorization

Update low-rank blocks

Compression
Factorize
Solve

Low-rank update
Dense update

Just-In-Time

Compress each block when fully
updated

Update full-rank blocks

4/22 CR15



Context
A new strategy

Experiments

MM vs JIT: updates with two contributions

Low-rank updates (Minimal Memory):

C1

= Low-rank update

(

Cearly = C0

,

contrib1

)

Cfinal = C2

= Low-rank update

(

C1

,

contrib2

)

Full-rank updates (Just-In-Time):

C1

= Dense update

(

Cinit = C0

,

contrib1

)

Cfinal

= Compression




C2

= Dense update

(

C1

,

contrib2

)



Both strategies have the same contributions as inputs and the same final
low-rank matrix as output

5/22 CR15



Context
A new strategy

Experiments

Limitations

Minimal Memory

Never use the blocks in their full-rank form: consumes as little
memory as possible

Expensive low-rank updates to maintain low-rank structures

Just-In-Time

Efficient updates

Compress blocks during the factorization: more memory consuming

The objective is to propose a memory-aware strategy that uses as much
memory as possible to speedup updates while remaining under a memory
constraint.

6/22 CR15



Context
A new strategy

Experiments

Outline

1 Context

2 A new strategy

3 Experiments

7/22 CR15



Context
A new strategy

Experiments

Modelization

Each block can be considered independently

Idea: two possible modes

early mode (as in the Minimal Memory strategy): execution time Ti

(sum of the updates) and memory si = ri × (mi + ni ).

lazy mode (as in the Just-In-Time strategy): execution time ti (sum
of the updates) and memory Si = mi × ni ;

Execute a set of blocks in early mode to respect the memory
constraint

Execute other blocks in lazy mode to perform efficient operations

8/22 CR15



Context
A new strategy

Experiments

General approach

Algorithm

For a given memory constraint M, choose the sets for being as fast
as possible

This algorithm is equivalent to Knapsack: we inherit its NP-hardness
and all approximation algorithms with the same approximation factor

Sort blocks in a greedy approach (2-approximation) accordingly to
Ti−ti
Si−si

Assumptions

i ∈ [1 : n],Si > si and Ti > ti

Otherwise, if Si ≤ si it is always better to execute the task in lazy
mode and if Ti ≤ ti it is always better to use the early mode.

9/22 CR15



Context
A new strategy

Experiments

Equivalence with Knapsack (1/2)

Knapsack problem

Let I be a set of n items. Each item has a value vi and a weight wi . The
objective is to fit some of the items in a bag of weight capacity W, while
maximizing the value of the objects inside the bag.

We associate a variable xi ∈ {0, 1} to each Ji ∈ [1 : n].
Let

xi = 1 if the task Ji is executed in lazy mode,
xi = 0 if the task Ji is executed in early mode.

Therefore, the ILP formulation is:

minimize
n∑

i=1

(xi ti ) +
n∑

i=1

((1− xi )Ti ) (1)

subject to
n∑

i=1

(xiSi ) +
n∑

i=1

((1− xi )si ) ≤M (2)

and ∀i ∈ {1, n}, xi ∈ {0, 1} (3)

10/22 CR15



Context
A new strategy

Experiments

Equivalence with Knapsack (2/2)

We have the following relations:

(1)⇐⇒ maximize
n∑

i=1

xi (Ti − ti )−
n∑

i=1

Ti ⇐⇒ maximize
n∑

i=1

xi (Ti − ti )

(2)⇐⇒
n∑

i=1

xi (Si − si ) ≤M−
n∑

i=1

si

Thanks to these two equivalences, we just showed that it is exactly a
linear formulation of the Knapsack problem:

maximize
n∑

i=1

xivi subject to
n∑

i=1

xiwi ≤ W and ∀i ∈ {1, n}, xi ∈ {0, 1}

with the following transformation:

∀i ∈ [1 : n], vi = Ti − ti and ∀i ∈ [1 : n],wi = Si − si
W =M−

∑n
i=1 si

Therefore, our problem is NP-complete
11/22 CR15



Context
A new strategy

Experiments

Approximation quality – theory

Algorithm 1 Greedy approximation algorithm

1: Sort tasks by non-increasing Ti−ti
Si−si

values
2: Greedily add tasks to a set S while the sum of their weights wi = Si−si

does not exceed M−
∑n

i=1 si

Our algorithm is a (1 + 2ερ)-approximation of our problem

ε = maxi Si/(M−
∑

j sj) (ratio size largest blocks wrt remaining
memory)

ρ = (
∑

i Ti )/(
∑

i ti ) (overhead of MM wrt JIT)

12/22 CR15



Context
A new strategy

Experiments

Approximation quality – in practice

(1 + 2ερ)-approximation of our problem

ε = maxi Si/(M−
∑

j sj)

ρ = (
∑

i Ti )/(
∑

i ti )

Practical values leading to a 1.02-approximation

ρ ≤ 10, it corresponds to the ratio between the execution times of
the Minimal Memory and Just-In-Time strategies

ε ≤ 0.001
1 Block size is lower than 256 (splitting) thus maxi Si ≈ 0.5 MB
2 Let us assume thatM≥ 1.1×

∑
j sj and that the overall memory is

larger than 5GB
3

M−
∑
j

sj ≥ 0.1
∑
j

sj ≥ 0.5GB

13/22 CR15



Context
A new strategy

Experiments

Models to estimate Ti , ti and si (1/2)

The mode of each block has to be chosen before starting the
factorization. Unfortunately, the time and the memory consumption
depend on the rank of the matrix. The rank depends on numerical
properties and cannot be known before the factorization.

Issue

The mode of each block has to be chosen before starting the
factorization

Time and memory for each mode depend on the rank

The rank depends on numerical properties: cannot be known in
advance

14/22 CR15



Context
A new strategy

Experiments

Models to estimate Ti , ti and si (1/2)

Memory consumption model

We made a linear regression for the rank (si = ri × (mi + ni )),
depending on

1 the initial rank
2 the height mi

3 the width ni
4 the surface mini
5 the number of updates the block receives.

Time model: sum of update’s time

We made a linear regression with the different parameters, knowing
the theoretical complexity of an update

When a rank appears, we use the five parameters given above instead

15/22 CR15



Context
A new strategy

Experiments

Results: actual vs predicted orders of blocks

Three categories

Blocks that are always better in early mode (Ti ≤ ti )

Blocks blocks to treat with Knapsack, sorted by Ti−ti
Si−si

Blocks that are always better in lazy mode (Si ≤ si )

0

20000

40000

0 20000 40000
Actual order

P
re

di
ct

ed
 o

rd
er

EarlyAct & EarlyPred

EarlyAct & TBDPred

LazyAct & EarlyPred

LazyAct & LazyPred

LazyAct & TBDPred

TBDAct & EarlyPred

TBDAct & LazyPred

TBDAct & TBDPred

Conclusions

Training with one
matrix and testing with
another

General trend

Imprecise

16/22 CR15



Context
A new strategy

Experiments

Outline

1 Context

2 A new strategy

3 Experiments

17/22 CR15



Context
A new strategy

Experiments

Experimental context

Solver / machine

PaStiX, used in sequential

Intel Xeon E5-4620, using MKL 2018

Matrices

Geo1438: geomechanical model of earth (1 437 960 non-zeroes)

Hook1498: model of a steel hook (1 498 023 non-zeroes)

Serena: gas reservoir simulation (1 391 349 non-zeroes)

18/22 CR15



Context
A new strategy

Experiments

Full algorithm for the memory-aware strategy

1 Run the factorization using Just-In-Time and Minimal Memory
strategies for the training matrix and train the time and the memory
models

2 Use the models for the test matrix
3 Select blocks that should always be treated in lazy mode (si ≥ Si )

as well as blocks that should always be treated in early mode
(ti ≥ Ti );

4 Sort the remaining blocks by decreasing value of Ti−ti
Si−si

;
5 Choose a sufficient number of blocks (following the order) to

perform in early mode in order to respect the memory constraint
and keep remaining blocks in lazy mode in order to perform
efficient updates

6 If the memory increases during the factorization and would exceed
the memory limit, we compress the next block in the previous order
(we switch this block to early mode). This is required for actual runs
of the solver as we cannot know the exact evolution of the memory
consumption of low-rank blocks before the actual factorization.

19/22 CR15



Context
A new strategy

Experiments

Simulation, train=Serena, test=Geo1438, tol = 10−8

Ratios depicted

Decreasing theoretical ratio Ti−ti
Si−si

Decreasing predicted ratio T∗
i −t∗i
Si−s∗i

Decreasing number of updates (count) received by a block

Random order, for baseline comparison.

10000 15000 20000 25000 30000 35000
Memory used (Mo)

400

600

800

1000

1200

1400

Si
m

ul
at

ed
 ti

m
e 

(s
)

theoretical ratio
predicted ratio
random
count

Conclusions

Excellent trade-off
between time and
memory, much better
than a naive approach

Close to the best
solution, knowing
perfectly all information

20/22 CR15



Context
A new strategy

Experiments

Results on real execution (train with Serena, tol = 10−8)

Matrix Strategy Memory (GB) Time(s)
With pred (s) Opt time (s)

Geo1438

Just-In-Time 43.2 555.9
Minimal Memory 14.7 1591.7

memory-aware

minimum 1190.2 1149.1
19 724.1 647.0
23 663.3 576.0
27 618.6 556.5
∞ 578.3 553.9

Hook1498

Just-In-Time 27.2 407.3
Minimal Memory 11.8 1863.7

memory-aware

minimum 1056.1 991.5
16 506.4 465.3
20 431.9 417.0
24 416.5 410.0
∞ 415.5 412.3

Serena

Just-In-Time 46.7 534.2
Minimal Memory 13.3 1876.2

memory-aware

minimum 1300.5 1270.9
18 654.0 606.0
22 579.1 543.5
26 552.7 529.1
∞ 539.8 527.1

Implementation

Blocks are first sorted

Dynamic memory
controller

Memory can increase
due to rank growth

Memory can decrease
when blocks are
compressed

21/22 CR15



Context
A new strategy

Experiments

Conclusion

A memory-aware strategy

Proof of concept for the sequential case

Implemented into the PaStiX solver

Allow to reach the best of both worlds ?

Interesting trade-offs: with 30% extra memory, divide time by 3

Open research

Parallel experiments with a parallel memory controller

Consider the critical path to better choose the mode of each block

22/22 CR15


	Main Talk
	Context
	A new strategy
	Experiments


