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Ordering with Nested Dissection

Partition V = A ∪ B ∪ C

1 Order C with larger indices: VA < VC and VB < VC

2 Apply the process recursively on A and B

3 Apply local heuristic such as AMF on small subgraphs

CA B

1 2 21 11 12

3 4 22 13 14

9 10 23 19 20

5 6 24 15 16

7 8 25 17 18

Nested dissection performed by an external partitioner tool

Find a separator C as small as possible

Balance subparts A and B
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Block Symbolic Factorization

General approach

1 Build a partition with the nested dissection process

2 Compress information on data blocks

3 Compute the block elimination tree using the block quotient graph
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Partitioning tools: irregular separators

Non-smooth separators

Blue: first separator of a
regular 3D cube

Green: interaction with
second-level (2) separators

Red: interaction with
third-level (4) separators
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Partitioning tools: multilevel approach

Coarsening
phase

Uncoarsening
phase

Initial partitioning

Prolonged partition

  Refined partition

Approach

Coarsening into a small graph

Expensive heuristics on the small graph (greedy-graph growing)

Uncoarsening with refinement (Fiduccia-Mattheyses)
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Reordering problem

Existing approaches

Ordering of separators on the local graph

Reverse Cuthill-McKee performs a Breadth First Search to order
unknowns

It is not designed for direct solvers since matrices of separators will
become full with the fill-in

Proposition

Ordering of separators to minimize the number of off-diagonal blocks

Does not impact memory consumption or the number of operations

Reduce the number of low-rank updates

Increase granularity

Enhance the use of heterogeneous architectures (GPUs, Xeon Phi)
Reduce the overhead associated with runtime systems
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Modeling of the problem

Proposition

Define a distance between rows: the number of differences between
off-diagonal blocks

Express the problem as a Traveling Salesman Problem (TSP) to sort
rows in order to minimize the overall distance

Use heuristics to perform TSP with low complexity
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Modeling of the problem

Notations for the `th diagonal block C`

Contributing supernodes are included in (Ck)k∈[1,`−1]

We define wi as the weight of row i and di,j the distance between
rows i and j
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Modeling of the problem

Notations for the `th diagonal block C`

Contributing supernodes are included in (Ck)k∈[1,`−1]

We define wi as the weight of row i and di,j the distance between
rows i and j

Quality: Number of off-diagonal blocks

odb` =
1

2
(w `

1 +

|C`|−1∑
i=1

d`i,i+1 + w `
|C`|)

Optimal solution to minimize odb`

Shortest Hamiltonian Path problem: find the shortest path visiting
once each line, with a constraint on first and last line

Complete symmetric graph: d`ij = d`ji and d`ij ≤ d`ik + d`kj
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Proposition

Traveling Salesman Problem

Find a cycle minimizing

|C`|∑
i=1

d`i,(i+1)[|C`|]

Add a fictive vertex S0, without any contribution to build a cycle
instead of a path

Algorithm: Insertion algorithm

1 Build the set B`i for each line i of C `

2 Compute the distance matrix

3 Insert lines to minimize the cycle length

4 Split the cycle at the fictive vertex to get the path
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Complexity

Results

For graphs respecting a nσ-separation theorem

Numerical factorization in Θ(n3σ)

Reordering bounded by Θ(nσ+1)

Type σ Reordering Factorization

2D 1
2 Θ(n

√
n) Θ(n

√
n)

3D 2
3 Θ(n

5
3 ) Θ(n2)

Table: Complexity for regular meshes

Asymptotically faster than the numerical factorization for σ > 1
2

Remind that RCM is well working in 2D case
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Resulting solution - Example

Figure: Without reordering (RCM) Figure: With reordering

Figure: Reordering on a 8 × 8 × 8 Laplacian

Works with any initial seed
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Experimental setup

Set of matrices

104 matrices issued from the SuiteSparse Matrix Collection

Matrices with 500, 000 ≤ N ≤ 10, 000, 000

Web and DNA matrices were removed

Strategy studied

TSP

TSP with multi-level distances: heuristic to reduce the cost of TSP
when computing distances between rows

Reordering in HSL, developed at STFC

Another strategy introduced by M. Jacquelin et al. (2018) is faster than
TSP while quality is close to TSP in most cases
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Number of off-diagonal blocks
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Reordering cost (sequential)
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Summary

Results

Reduce the number of off-diagonal blocks and thus the overhead
associated with low-rank updates

Lead to larger data blocks suitable for modern architectures

Always increase performance wrt Scotch

Architecture Nb. units Mean gain Max gain

Westmere 12 cores 2% 6%
Xeon E5 24 cores 7% 13%
Fermi 12 cores + 1 to 3 M2070 10% 20%
Kepler 24 cores + 1 to 4 K40 15% 40%
Xeon Phi 64 cores 20% 40%

Table: Performance gain for the full-rank factorization when using PaRSEC
runtime system with TSP instead of Scotch

17/25 CR15



Context
Enhancing data locality

Obtaining compressible blocks

Outline

1 Context

2 Enhancing data locality

3 Obtaining compressible blocks

18/25 CR15



Context
Enhancing data locality

Obtaining compressible blocks

Enhancing low-rank compression

What have we seen for now

When to compress blocks

How to perform operations on low-rank blocks

We can reduce significantly execution time and/or memory
consumption

Enhancing low-rank compression

Some off-diagonal blocks are full-rank

Some blocks are very well compressible

Objective: introduce some condition to define the potential compression
(admissibility) of a block
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Where does come compressibility ?

Mathematical property

From some operators

The ranks depend on the underlying operator

In practice

Blocks that represent far-away interactions (in the geometry of the
problem) are well compressible

Exhibit clusters with a small diameter and few neighbours
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Admissibility criteria

A widely used admissibility condition, named strong block-admissibility
is defined as follows:

σ × τ is admissible ⇐⇒ max(diam(σ), diam(τ)) ≤ η dist(σ, τ) (1)

where η is a fixed parameter, diam() is the geometric diameter of a
cluster and dist() the minimum distance between two clusters.

Another used admissibility condition named weak admissibility is less
strict:

σ × τ is admissible ⇐⇒ σ 6= τ. (2)

With this last admissibility condition, only diagonal blocks (representing
self-interaction) are not admissible.
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Clustering technique: k-way partitioning (1/2)

Objectives of a nice clustering

Clusters with a small diameter

Only a few neighbours

In practice

Use k-way partitioning on the graph of each separator

Eventually reconnect the graph before
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Clustering technique: k-way partitioning (2/2)
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(a) Symbolic factorization (b) First separator cluster-
ing

Figure: 8 × 8 × 8 Laplacian partitioned using Scotch and k-way clustering on
the first separator
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Comparison with reordering + regular splitting
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(a) Symbolic factorization (b) First separator cluster-
ing

Figure: 8 × 8 × 8 Laplacian partitioned using Scotch and Reordering
clustering on the first separator
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Dense and full-rank blocks

Results coming from the clustering

Diagonal blocks represent self-interaction: full-rank

Neighbours from the clustering represent direct interactions: high
rank

Non-neighbours represent far-away interactions: low rank

Results

Θ(1) full-rank blocks per column block

The rank depends on the underlying operator, can be Θ(1) for an
easy problem, Θ(

√
n) for most problems or even Θ(n) for very

difficult problems
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