Ordering for low-rank compression

Grégoire Pichon, Bora Ucar & Frédéric Vivien

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: December 2022
gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

-

/25 CR15

gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Context

Outline

© Context

2/25 CR15

Context

Ordering with Nested Dissection

Partition V = AUBU C
@ Order C with larger indices: V4 < V¢ and Vg < V¢
@ Apply the process recursively on A and B

© Apply local heuristic such as AMF on small subgraphs

i)

N

@
oo
ISOSUS!

@
&}

pegens

@3

Nested dissection performed by an external partitioner tool
e Find a separator C as small as possible

@ Balance subparts A and B

3/25 CR15

Context

Ordering with Nested Dissection

Partition V = AUBU C
@ Order C with larger indices: V4 < V¢ and Vg < V¢
@ Apply the process recursively on A and B

© Apply local heuristic such as AMF on small subgraphs

Nested dissection performed by an external partitioner tool

e Find a separator C as small as possible

@ Balance subparts A and B

3/25 CR15

Context

Ordering with Nested Dissection

Partition V = AUBU C
@ Order C with larger indices: V4 < V¢ and Vg < V¢
@ Apply the process recursively on A and B

© Apply local heuristic such as AMF on small subgraphs

Nested dissection performed by an external partitioner tool

e Find a separator C as small as possible

@ Balance subparts A and B

3/25 CR15

Context

Block Symbolic Factorization

General approach
@ Build a partition with the nested dissection process
@ Compress information on data blocks
© Compute the block elimination tree using the block quotient graph

11
= o
q)
(L)
} 2
\ 3
4
%Adjacency graph (G)” 1}
5
odva X
} @
7
©) ® 00 O
Quotient graph (G*/P) Elimination tree (T) Factorized matrix (L),
— (/P

4/25 CR15

Context

Partitioning tools: irregular separators

Non-smooth separators

@ Blue: first separator of a
regular 3D cube

@ Green: interaction with
second-level (2) separators

@ Red: interaction with
third-level (4) separators

5/25 CR15

Context

Partitioning tools: multilevel approach

Refined partition
Prolonged partition

Coarsening

" @

Initial partitioning

Uncoarsening
phase

Approach

@ Coarsening into a small graph

@ Expensive heuristics on the small graph (greedy-graph growing)
@ Uncoarsening with refinement (Fiduccia-Mattheyses)

6/25 CR15

Enhancing data locality

Outline

© Enhancing data locality

7/25 CR15

Enhancing data locality

Reordering problem

Existing approaches
@ Ordering of separators on the local graph

@ Reverse Cuthill-McKee performs a Breadth First Search to order
unknowns

@ It is not designed for direct solvers since matrices of separators will
become full with the fill-in

@ Ordering of separators to minimize the number of off-diagonal blocks

@ Does not impact memory consumption or the number of operations
@ Reduce the number of low-rank updates

@ Increase granularity
o Enhance the use of heterogeneous architectures (GPUs, Xeon Phi)
o Reduce the overhead associated with runtime systems

8/25 CR15

Enhancing data locality

Modeling of the problem

Proposition

@ Define a distance between rows: the number of differences between
off-diagonal blocks

@ Express the problem as a Traveling Salesman Problem (TSP) to sort
rows in order to minimize the overall distance

@ Use heuristics to perform TSP with low complexity

9/25 CR15

Enhancing data locality

Modeling of the problem

Proposition

@ Define a distance between rows: the number of differences between
off-diagonal blocks

@ Express the problem as a Traveling Salesman Problem (TSP) to sort
rows in order to minimize the overall distance

@ Use heuristics to perform TSP with low complexity

|1 2 3 4
1
) 1[0 - - -
¢ 4 4 ¢ 213 0 B,
: { { :
Z +1 +1 +0 +0 303 2 0 -
401 4 2 0

9/25 CR15

Enhancing data locality

Modeling of the problem

Notations for the ¢*" diagonal block C,
o Contributing supernodes are included in (Cx)xefr,e—1]

@ We define w; as the weight of row i and d; ; the distance between
rows i and j

10/25 CR15

Enhancing data locality

Modeling of the problem

Notations for the ¢*" diagonal block C,
o Contributing supernodes are included in (Cx)xer,e—1]

@ We define w; as the weight of row i and d; ; the distance between
rows / and j

Quality: Number of off-diagonal blocks

[Cel—1

1
odbe=s (Wt Y dia+w,)
i=1

10/25 CR15

Enhancing data locality

Modeling of the problem

Notations for the ¢*" diagonal block G,

o Contributing supernodes are included in (Cx)xer,e—1]

@ We define w; as the weight of row i and d; ; the distance between
rows i and j

v

Quality: Number of off-diagonal blocks

1 [Cel—1
OdbZ = E(Wf + Z d,'é’,'+1 + chél)

i=1

Optimal solution to minimize odb®

@ Shortest Hamiltonian Path problem: find the shortest path visiting
once each line, with a constraint on first and last line

o Complete symmetric graph: dj; = d; and dj; < dj + dj;

10/25 CR15

Enhancing data locality

Proposition

Traveling Salesman Problem

@ Find a cycle minimizing

| Cel

14
> dnc
=1

@ Add a fictive vertex Sy, without any contribution to build a cycle
instead of a path

Algorithm: Insertion algorithm

© Build the set B for each line i of C*

© Compute the distance matrix

@ Insert lines to minimize the cycle length

@ Split the cycle at the fictive vertex to get the path

11/25 CR15

Enhancing data locality

Complexity

o For graphs respecting a n?-separation theorem
o Numerical factorization in ©(n37)
@ Reordering bounded by ©(n°*1)

Type | o | Reordering | Factorization

©(ny/n) ©(ny/n)
o(n3) o(n?)

2D

WIN NI

3D

Table: Complexity for regular meshes

Asymptotically faster than the numerical factorization for o > %
Remind that RCM is well working in 2D case

12/25 CR15

Enhancing data locality

Resulting solution - Example

N N
A by
N =S
=== N -i:h
= N
EN E
1N
" kL
- ;_h
% _ R
—== —; —l %
Figure: Without reordering (RCM) Figure: With reordering

Figure: Reordering on a 8 x 8 x 8 Laplacian

Works with any initial seed

13/25 CR15

Enhancing data locality

Experimental setup

Set of matrices

@ 104 matrices issued from the SuiteSparse Matrix Collection
@ Matrices with 500,000 < N < 10,000, 000

@ Web and DNA matrices were removed

Strategy studied

e TSP
@ TSP with multi-level distances: heuristic to reduce the cost of TSP
when computing distances between rows

@ Reordering in HSL, developed at STFC

Another strategy introduced by M. Jacquelin et al. (2018) is faster than
TSP while quality is close to TSP in most cases

14/25 CR15

Enhancing data locality

Number of off-diagonal blocks

* HSL reordering, max=1.1, mean=0.9
¢ TSP with multi-level distances, max=1.0, mean=0.6
e TSP with full distances, max=0.9, mean=0.6

=

<

2

@ 1.2

= *

5

%10 Fal - * x

- i * 0 ok Kk

ﬁ ¢ * ;~) kK :" é ¢

= * P ax 0 * o

Bosl Semonn’ e e e T
b 2% N

g ﬁ.'.u’ ﬁ % % *
. o

z R IR

% 0.6} " 1

g e LX) & ¢ *

& * ¢ % o

S ¢ % 4 %% 40 Y

S o0ale.® o -

E 0& ® “&0“ %

. e

< 02f 1

z

S

2 0.0 "

g Matrix Id

z

15/25 CR15

Enhancing data locality

Reordering cost (sequential)

*

TSP with full distances, max=668.0, mean=7.0(0.6)
TSP with multi-level distances, max=172.0, mean=2.0(0.3)
HSL reordering, max=4e-02, mean=1e-02

Time reordering / Time Scotch ordering
= - - =

S =) 5 =)

w > % s

-
S
&

-
S
%

b, Mo o
o ¢ . Pt e -
P § ¢, o e,
L ° S 00 0(3 $ N o]
D ® ¢ LI S——
‘00 30, o 50& e
* *
o o I "‘.ﬁ”’:* " i 4
e
Matrix Id
16/25 CR15

Enhancing data locality

Summary

@ Reduce the number of off-diagonal blocks and thus the overhead
associated with low-rank updates

@ Lead to larger data blocks suitable for modern architectures

@ Always increase performance wrt SCOTCH

Architecture Nb. units Mean gain Max gain
Westmere 12 cores 2% 6%
Xeon E5 24 cores 7% 13%
Fermi 12 cores + 1 to 3 M2070 10% 20%
Kepler 24 cores + 1 to 4 K40 15% 40%
Xeon Phi 64 cores 20% 40%

Table: Performance gain for the full-rank factorization when using PARSEC
runtime system with TSP instead of ScoTCH

17/25 CR15

Obtaining compressible blocks

Outline

© Obtaining compressible blocks

18/25 CR15

Obtaining compressible blocks

Enhancing low-rank compression

What have we seen for now

@ When to compress blocks
@ How to perform operations on low-rank blocks

@ We can reduce significantly execution time and/or memory
consumption

Enhancing low-rank compression

@ Some off-diagonal blocks are full-rank

@ Some blocks are very well compressible

Objective: introduce some condition to define the potential compression
(admissibility) of a block

19/25 CR15

Obtaining compressible blocks

Where does come compressibility ?

Mathematical property

@ From some operators

@ The ranks depend on the underlying operator

In practice

@ Blocks that represent far-away interactions (in the geometry of the
problem) are well compressible

@ Exhibit clusters with a small diameter and few neighbours

20/25 CR15

Obtaining compressible blocks

Admissibility criteria

A widely used admissibility condition, named strong block-admissibility
is defined as follows:

o X T is admissible <= max(diam(o),diam(7)) < n dist(o,7) (1)

where 7 is a fixed parameter, diam() is the geometric diameter of a
cluster and dist() the minimum distance between two clusters.

Another used admissibility condition named weak admissibility is less
strict:
o X 7 is admissible <= o # 7. (2)

With this last admissibility condition, only diagonal blocks (representing
self-interaction) are not admissible.

21/25 CR15

Obtaining compressible blocks

Clustering technique: k-way partitioning (1/2)

Objectives of a nice clustering

@ Clusters with a small diameter

@ Only a few neighbours

4

In practice

@ Use k-way partitioning on the graph of each separator

@ Eventually reconnect the graph before

22/25 CR15

Obtaining compressible blocks

Clustering technique: k-way partitioning (2/2)

(a) Symbolic factorization (b) First separator cluster-
ing

Figure: 8 x 8 x 8 Laplacian partitioned using SCOTCH and k-way clustering on
the first separator

23/25 CR15

Obtaining compressible blocks

Comparison with reordering + regular splitting

(a) Symbolic factorization (b) First separator cluster-
ing

Figure: 8 x 8 x 8 Laplacian partitioned using SCOTCH and Reordering
clustering on the first separator

24/25 CR15

Obtaining compressible blocks

Dense and full-rank blocks

Results coming from the clustering
@ Diagonal blocks represent self-interaction: full-rank

@ Neighbours from the clustering represent direct interactions: high
rank

@ Non-neighbours represent far-away interactions: low rank

©(1) full-rank blocks per column block

@ The rank depends on the underlying operator, can be ©(1) for an
easy problem, ©(y/n) for most problems or even ©(n) for very
difficult problems

pLYPLY CR15

	Main Talk
	Context
	Enhancing data locality
	Obtaining compressible blocks

