Low-Rank Compression in Sparse direct solvers

Grégoire Pichon, Bora Uçar & Frédéric Vivien

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: December 2022 gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Low-rank compression kernels Low-rank into sparse direct solvers Homework due on January 9th

Outline

2 Low-rank compression kernels

3 Low-rank into sparse direct solvers

- General approach
- PASTIX strategies

Low-rank compression kernels Low-rank into sparse direct solvers Homework due on January 9th

Context

Sparse direct solvers

- Very robust wrt other approaches
- High time and memory complexities
- Using efficient BLAS Level 3 kernels

	2D	3D	
$\sigma = \frac{1}{2}$		$\sigma = \frac{2}{3}$	
OPC	NNZ	OPC	NNZ
$\Theta(n^{\frac{3}{2}})$	$\Theta(n \ln(n))$	$\Theta(n^2)$	$\Theta(n^{\frac{4}{3}})$

Block Symbolic Factorization

General approach

- Build a partition with the nested dissection process
- Ompress information on data blocks
- Ompute the block elimination tree using the block quotient graph

Block Numerical Factorization

Algorithm to eliminate the k^{th} supernode

- Factorize the diagonal block (POTRF/GETRF)
- Solve off-diagonal blocks in the current supernode (TRSM)
- **Output** Update the trailing matrix with the supernode contribution (GEMM)

Low-rank compression kernels Low-rank into sparse direct solvers Homework due on January 9th

Block LU Factorization (dense)

Algorithm 1 LU Factorization

- 1: for k = 1 to n do
- 2: Factorize $A_{kk} = L_{kk} U_{kk}$
- 3: **for** i = k + 1 to *n* **do**
- 4: Solve $A_{ik} = L_{ik} * U_{kk}$
- 5: **for** j = k + 1 to *n* **do**
- 6: Solve $A_{kj} = L_{kk} * U_{kj}$
- 7: **for** i = k + 1 to *n* **do**
- 8: **for** j = k + 1 to *n* **do**
- 9: $A_{ij} = A_{ij} L_{ik} * U_{kj}$

Low-rank compression kernels Low-rank into sparse direct solvers Homework due on January 9th

Low-rank compression

Figure: Original picture of size 500×500

Figure: 4% of original storage cost

Figure: 20% of original storage cost

Low-rank compression kernels Low-rank into sparse direct solvers Homework due on January 9th

Objectives

Reduce the complexity

- Replace dense blocks by low-rank blocks
- Adapt underlying kernels

Similar properties

- Keep the same level of parallelism
- Use efficient underlying kernels

Outline

2 Low-rank compression kernels

Low-rank into sparse direct solvers

- General approach
- PASTIX strategies

Low-rank compression

Storage in 2nr instead of n^2

Figure: Original picture, n = 500

Figure: r = 10, 4% of original storage

Figure: r = 50, 20% of original storage

Rank definitions (1/2)

Rank

The rank k of a matrix A is defined as the smallest integer such that there exist matrices U and V of size $n \times k$ with $A = UV^t$

Numerical rank

The numerical rank k_{ϵ} of a matrix A at accuracy ϵ is defined as the smallest integer such that there exists a matrix A_{ϵ} of rank k_{ϵ} with $||A - A_{\epsilon}|| \leq \epsilon$

Rank definitions (2/2)

Eckart-Young theorem

Let $U\Sigma V^t$ be the SVD decomposition of A and $\sigma_i = \Sigma_{i,i}$ be its singular values. Then, $\hat{A} = U_{1:n,1:k}\Sigma_{1:k}V_{1:n,1:k}^t$ is the optimal rank-k approximation of A and $||A - \hat{A}||_2 = \sigma_{k+1}$

Low-rank matrix

A is said to be low-rank (for a given accuracy ϵ) if its numerical rank k_{ϵ} is small enough such that its rank- k_{ϵ} approximation requires less storage than the full-rank matrix A, *i.e.*, if $k_{\epsilon}(m+n) \leq mn$

Singular Value Decomposition (Figure from Wikipedia)

Idea

- Image of the unit sphere
- The singular values can be seen as the magnitude of the semiaxis of an n-dimensional ellipsoid
- Unique decomposition
- The smallest singular values represent less important data

QR Factorization (1/2)

Idea

- For rectangular matrices
- A = QR, A of size $m \times n$, Q of size $m \times m$, R of size $m \times n$
- Q is orthogonal, R is upper triangular

Reduced QR

- If the matrix is not full-rank, some columns of *R* will be made of zeroes
- Can be used to compress a matrix

QR Factorization (2/2)

How to build it ?

- Gram-Schmidt Orthogonalization
- Using Givens rotations
- Using reflections with Householder matrices

Ideas behind Householder matrices

- Cancel elements below the diagonal in R
- First step where x is the first column of A

$$e_1 = (1, 0, \dots, 0)^t$$

3
$$u = x - ||x||e_1$$
 (or $+||x||$ if $x_1 < 0$)

$$v = \frac{u}{||u||}$$

$$Q_1 = I - 2vv^2$$

9 In Q_1A , only the first element of the first column is non-zero

Rank-Revealing QR Factorization

Algorithm 2 QR with Column Pivoting: [Q, R, P] = QRCP(A)

for
$$j = 1, 2, ..., min(m, n)$$
 do
 $p_j = \max_{l=j-1,...,n} (||A_{:;l}^{(j-1)}||_2) \triangleright$ Find the pivot
 $A^{(j-1)} = A^{(j-1)}p_j \triangleright$ Apply the pivot
 $H^{(j)} = I - y_j \tau_j y_j^T \triangleright$ Compute the Householder reflection
 $A^{(j)} = H^{(j)}A^{(j-1)} \triangleright$ Update the trailing matrix

In practice, stop when the norm of the trailing submatrix is small enough

Compression kernels

Kernel	Complexity
Singular Value Decomposition (SVD)	$\Theta(mn^2)$
Rank-Revealing QR (RRQR)	$\Theta(mnr)$
RRQR with randomization	$\Theta(mnr)$
ACA, BDLR, CUR	$\Theta((m+n)r)$

Properties

- $\bullet\,$ SVD provides the best ranks at a given accuracy with $||.||_2$
- RRQR keeps a control of accuracy, but efficiency is poor due to pivoting
- Randomization techniques are suitable to perform a rank-*r* approximation but may be costly for computing an accurate representation
- The accuracy of ACA/BDLR/CUR is problem dependent

Compression formats for dense matrices

Figure: BLR clustering

Figure: HODLR clustering

Block-admissibility	Partitioning			
	Flat	Flat Hierarchical		
		Without nested bases	With nested bases	
Weak	DID	HODLR	HSS	
Strong	DLK	\mathcal{H}	\mathcal{H}^2	

18/36 CF

General approach PASTIX strategies

Outline

2 Low-rank compression kernels

3 Low-rank into sparse direct solvers

- General approach
- PASTIX strategies

General approach PASTIX strategies

BLR compression – Symbolic factorization

Approach

- Large supernodes are split
- It increases the level of parallelism

Operations

- Dense diagonal blocks
- TRSM are performed on dense off-diagonal blocks
- GEMM are performed between dense off-diagonal blocks

General approach PASTIX strategies

BLR compression – Symbolic factorization

Approach

- Large supernodes are split
- Large off-diagonal blocks are **low-rank**

Operations

- Dense diagonal blocks
- TRSM are performed on low-rank off-diagonal blocks
- GEMM are performed between **low-rank** off-diagonal blocks

General approach PASTIX strategies

When to compress ?

What do we have for now?

- Methods to compress dense blocks into low-rank form
- We potentially need to perform operations differently on low-rank blocks

Several strategies to choose when to compress

- During the allocation of the matrix
- When a block has received all its updates
- When a block was eliminated

General approach PASTIX strategies

Strategy Just-In-Time

- Eliminate each column block
 - Factorize the dense diagonal block Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - S LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks

General approach PASTIX strategies

Strategy Just-In-Time

- Eliminate each column block
 - Factorize the dense diagonal block Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - S LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks

General approach PASTIX strategies

Strategy Just-In-Time

- Eliminate each column block
 - Factorize the dense diagonal block Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - S LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks

General approach PASTIX strategies

Strategy Just-In-Time

- Eliminate each column block
 - Factorize the dense diagonal block Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - S LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks

General approach PASTIX strategies

Strategy Just-In-Time

- Eliminate each column block
 - Factorize the dense diagonal block Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks

General approach PASTIX strategies

Summary of the Just-In-Time strategy

Advantages

- The expensive update operation, is faster using LR2GE kernel
- The formation of the dense update and its application is not expensive
- The size of the factors is reduced, as well as the solve cost

A limitation of this approach

- All blocks are allocated in full-rank before being compressed
- Limiting this constraint may reduce the level of parallelism

General approach PASTIX strategies

Summary of the Just-In-Time strategy

Advantages

- The expensive update operation, is faster using LR2GE kernel
- The formation of the dense update and its application is not expensive
- The size of the factors is reduced, as well as the solve cost

A limitation of this approach

- All blocks are allocated in full-rank before being compressed
- Limiting this constraint may reduce the level of parallelism

23/36

General approach PASTIX strategies

Strategy Minimal Memory

- Compress large off-diagonal blocks in A (exploiting sparsity)
- eliminate each column block
 - Factorize the dense diagonal block
 - Apply a TRSM on LR blocks (cheaper)
 - S LR update on LR matrices (LR2LR extend-add)
- Solve triangular systems with LR blocks

General approach PASTIX strategies

Strategy Minimal Memory

- Compress large off-diagonal blocks in A (exploiting sparsity)
- eliminate each column block
 - Factorize the dense diagonal block
 - Apply a TRSM on LR blocks (cheaper)
 - S LR update on LR matrices (LR2LR extend-add)
- Solve triangular systems with LR blocks

General approach PASTIX strategies

Strategy Minimal Memory

- Compress large off-diagonal blocks in A (exploiting sparsity)
- eliminate each column block
 - Factorize the dense diagonal block
 - Apply a TRSM on LR blocks (cheaper)
 - S LR update on LR matrices (LR2LR extend-add)
- Solve triangular systems with LR blocks

General approach PASTIX strategies

Strategy Minimal Memory

- Compress large off-diagonal blocks in A (exploiting sparsity)
- eliminate each column block
 - Factorize the dense diagonal block
 - Apply a TRSM on LR blocks (cheaper)
 - S LR update on LR matrices (LR2LR extend-add)
- Solve triangular systems with LR blocks

General approach PASTIX strategies

Solve operation

The solve operation for a generic lower triangular matrix L is applied to blocks in low-rank forms in our two scenarios.

- 1: Solve $A_{ik} = L_{ik} * U_{kk}$
- 2: Solve $A_{kj} = L_{kk} * U_{kj}$

Steps for (2) – similar for (1)

9
$$L\hat{x} = \hat{b}$$
 becomes $LU_xV_x^t = U_bV_b^t$

2 Let us take
$$V_x^t = V_b^t$$

3 We need to solve
$$LU_x = U_b$$

The operation is then equivalent to applying a dense solve only to U_b , and the complexity is only $\Theta(m_L^2 r_x)$, instead of $\Theta(m_L^2 n_L)$ for the full-rank (dense) representation.

General approach PASTIX strategies

Extend-add process: $C = C - AB^t$

Product of two low-rank blocks with recompression

•
$$\hat{A}\hat{B}^t = (u_A(v_A^t v_B))u_B^t = u_A((v_A^t v_B)u_B^t)$$

Recompression

$$T = (v_A^t v_B)$$

$$\hat{T} = v_A^t v_B = u_T v_T^t$$

$$\hat{A}\hat{B}^t = (u_A u_T)(v_T^t v_B^t)$$

Application to a dense matrix (LR2GE)

Form explicitly the product

Application to a low-rank matrix (LR2LR)

•
$$u_{C'}v_{C'}^t = [u_C, u_{AB}]([v_C, -v_{AB}])^t$$
 (recompression ?)

General approach PASTIX strategies

Focus on the LR2LR kernel

General approach PASTIX strategies

LR2LR kernel using SVD

A low-rank structure $U_C V_C^t$ receives a low-rank contribution $U_{AB} V_{AB}^t$

The complexity of this operation depends on the dimensions of C

General approach PASTIX strategies

LR2LR kernel using SVD

A low-rank structure $U_C V_C^t$ receives a low-rank contribution $U_{AB} V_{AB}^t$

The complexity of this operation depends on the dimensions of C

General approach PASTIX strategies

LR2LR kernel using SVD

A low-rank structure $U_C V_C^t$ receives a low-rank contribution $U_{AB} V_{AB}^t$

The complexity of this operation depends on the dimensions of C

General approach PASTIX strategies

LR2LR kernel using RRQR

Taking advantage of orthogonality

- If we handle low-rank matrices of the form uv^t , we can ensure that u matrices are always orthogonal
- This is true after the first compression (for SVD, apply singular values on the right)
- This is conserved by the Solve and the Update operations
- Warning: we have to store U^t in the LU factorization to ensure orthogonality

Maintaining orthogonality by enlarging an existing basis

- QR or partialQR
- Modified Gram-Schmidt

General approach PASTIX strategies

Extend-add: RRQR Recompression

A low-rank structure $u_1v_1^t$ receives a low-rank contribution $u_2v_2^t$. u_1 and u_2 are orthogonal matrices

Algorithm

$$A = u_1 v_1^t + u_2 v_2^t = ([u_1, u_2]) \times ([v_1, v_2])^t$$

Orthogonalize u_2 with respect to u_1 :

$$u_2^* = u_2 - u_1(u_1^t u_2)$$

Form new orthogonal basis, and normalize each column :

$$[u_1, u_2] = [u_1, u_2^*] \times \begin{pmatrix} I & u_1^t u_2 \\ 0 & I \end{pmatrix}$$

Apply a RRQR on :

$$\begin{pmatrix} I & u_1^t u_2 \\ 0 & I \end{pmatrix} \times ([v_1, v_2])^t$$

General approach PASTIX strategies

Experimental setup

Machine: 2 INTEL Xeon E5 - 2680v3 at 2.50 GHz

- 128 GB
- 24 threads
- \bullet Parallelism is obtained following ${\rm PASTIX}$ static scheduling for multi-threaded architectures

Entry parameters

- Tolerance τ : absolute parameter (normalized for each block)
- Compression method is RRQR
- Blocking sizes: between 128 and 256 in following experiments

General approach PASTIX strategies

Performance of RRQR/Just-In-Time wrt full-rank version

General approach PASTIX strategies

Performance of RRQR/Just-In-Time wrt full-rank version

General approach PASTIX strategies

Behavior of RRQR/Minimal Memory wrt full-rank version

Performance

- Increase by a factor of 1.9 for $\tau = 10^{-8}$
- Better for a lower accuracy

Memory peak

- Reduction by a factor of 1.7 for $\tau = 10^{-8}$
- Close to the results obtained using SVD

General approach PASTIX strategies

Summary

A $330^3 = 36M$ unknowns Laplacian has been solved with $\tau = 10^{-4}$ while it was restricted to $220^3 = 8M$ using the full-rank version

Memory consumption

- Minimal Memory strategy really saves memory
- Just-In-Time strategy reduces the size of L' factors, but supernodes are allocated dense at the beginning: no gain in pure *right-looking*

Factorization time

- Minimal Memory strategy requires expensive extend-add algorithms to update (recompress) low-rank structures with the LR2LR kernel
- Just-In-Time strategy continues to apply dense update at a smaller cost through the LR2GE kernel

Outline

2 Low-rank compression kernels

3 Low-rank into sparse direct solvers

- General approach
- PASTIX strategies

What is asked ?

Compute the dense Block Low-Rank complexity (memory and time) of an $n \times n$ matrix when using updates on dense matrices (Just-In-Time).

Assumptions

- The rank is in $\Theta(n^{\alpha})$
- The block size is n^x , there are n^{1-x} blocks
- Diagonal blocks are dense
- There are $\Theta(1)$ full-rank blocks in each column

Objectives: 1) compute the complexity (memory and time) depending on the rank and the block size and 2) compute the optimal block size. Apply with $r = \Theta(1)$ and $r = \Theta(n^{\frac{1}{2}})$.