Low-Rank Compression in Sparse direct
solvers

Grégoire Pichon, Bora Ucar & Frédéric Vivien

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: December 2022
gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

1/36 CR15

gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Context

Outline

© Context

2/36 CR15

Context

Context

Sparse direct solvers
@ Very robust wrt other approaches
@ High time and memory complexities
@ Using efficient BLAS Level 3 kernels

2D 3D
c=3 c=32

OPC NNZ OPC | NNZ

O(n2) | ©(n In(n)) | ©(n?) | ©(n3)

3/36 CR15

Context

Block Symbolic Factorization

General approach

© Build a partition with the nested dissection process
@ Compress information on data blocks

© Compute the block elimination tree using the block quotient graph

>
“Adjacency graph (G)

@ .
@ ®
CRONONG)
n tree (T). actorized ,

Quotient graph (G*/P) Eliminatio
(G/P)*

4/36 CR15

Context

Block Numerical Factorization

Algorithm to eliminate the k" supernode
@ Factorize the diagonal block (POTRF/GETRF)
@ Solve off-diagonal blocks in the current supernode (TRSM)
@ Update the trailing matrix with the supernode contribution (GEMM)

i Update @

5/36 CR15

Context

Block LU Factorization (dense)

Algorithm 1 LU Factorization
1: for k=1to ndo
2: Factorize A = Lk Ui
for i=k+1to ndo
Solve A,'k = L,'k * Ukk
for j=k+1tondo
Solve Akj = ka * Ukj
for i=k+1tondo
for j=k+1tondo
A,'j = A,j — L,'k * Ukj

© XN AW

6/36 CR15

Context

Low-rank compression

Figure: Original picture Figure: 4% of original Figure: 20% of original
of size 500 x 500 storage cost storage cost

7/36 CR15

Context

Objectives

Reduce the complexity

@ Replace dense blocks by low-rank blocks

@ Adapt underlying kernels

Similar properties

@ Keep the same level of parallelism

@ Use efficient underlying kernels

8/36 CR15

Low-rank compression kernels

Outline

9 Low-rank compression kernels

9/36 CR15

Low-rank compression kernels

Low-rank compression

U, v e R™r
= X .
M e Rnxn
Vt
M U

Storage in 2nr instead of n?

Figure: Original picture, Figure: r = 10, 4% of Figure: r = 50, 20% of
n =500 original storage original storage

10/36 CR15

Low-rank compression kernels

Rank definitions (1/2)

The rank k of a matrix A is defined as the smallest integer such that
there exist matrices U and V of size n x k with A = UV?

Numerical rank

The numerical rank k. of a matrix A at accuracy e is defined as the

smallest integer such that there exists a matrix A, of rank k. with
|A— Al <e

11/36 CR15

Low-rank compression kernels

Rank definitions (2/2)

Eckart-Young theorem

Let UX V' be the SVD decomposition of A and o; = X;; be its singular
values. Then, A= Utin1:k21:k Vlt:n’lzk is the optimal rank-k

approximation of A and ||A — Al|2 = y41

| A

Low-rank matrix
A is said to be low-rank (for a given accuracy ¢) if its numerical rank k.

is small enough such that its rank-k. approximation requires less storage
than the full-rank matrix A, i.e., if k.(m+ n) < mn

12/36 CR15

Low-rank compression kernels

Singular Value Decomposition (Figure from Wikipedia)

@ Image of the unit sphere

@ The singular values can be seen as the magnitude of the semiaxis of
an n-dimensional ellipsoid

@ Unique decomposition

@ The smallest singular values represent less important data

Low-rank compression kernels

QR Factorization (1/2)

@ For rectangular matrices
@ A= QR, A of size mx n, Q of size mx m, R of size mx n

@ Q is orthogonal, R is upper triangular

Reduced QR

@ If the matrix is not full-rank, some columns of R will be made of
zeroes

@ Can be used to compress a matrix

14/36 CR15

Low-rank compression kernels

QR Factorization (2/2)

How to build it ?

@ Gram-Schmidt Orthogonalization
@ Using Givens rotations

@ Using reflections with Householder matrices

v

Ideas behind Householder matrices

@ Cancel elements below the diagonal in R
o First step where x is the first column of A
Q e« =(1,0,...,0)"
Q u=x—||x||ler (or +]||x]|| if xx < 0)
Q v=r
Q Q. =/-2w!

© In Q1 A, only the first element of the first column is non-zero

15/36 CR15

Low-rank compression kernels

Rank-Revealing QR Factorization

Algorithm 2 QR with Column Pivoting: [Q, R, P] = QRCP(A)

for j =1,2,...,min(m, n) do
pj = max/:j_lr_,7,,(|\A:(;jfl)Hz) > Find the pivot
AU = A(j_l)pj > Apply the pivot
HY =1~ ijjij > Compute the Householder reflection
AU = HU AU-1) 1 Update the trailing matrix

In practice, stop when the norm of the trailing submatrix is small enough

16/36 CR15

Low-rank compression kernels

Compression kernels

Kernel Complexity
Singular Value Decomposition (SVD) ©(mn?)
Rank-Revealing QR (RRQR) ©(mnr)
RRQR with randomization ©(mnr)
ACA, BDLR, CUR o((m+ n)r)

@ SVD provides the best ranks at a given accuracy with ||.||2

@ RRQR keeps a control of accuracy, but efficiency is poor due to
pivoting

@ Randomization techniques are suitable to perform a rank-r
approximation but may be costly for computing an accurate
representation

@ The accuracy of ACA/BDLR/CUR is problem dependent

17/36 CR15

Low-rank compression kernels

Compression formats for dense matrices

T z
Il
I ! 7
I z
Il
I 2 z
Figure: BLR clustering Figure: HODLR clustering
Block-admissibility Partitioning
Flat Hierarchical
Without nested bases With nested bases
Weak HODLR HSS
Strong BLR H H?

18/36 CR15

Low-rank into sparse direct solvers

Outline

© Low-rank into sparse direct solvers

19/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

BLR compression — Symbolic factorization

Approach

@ Large supernodes are
split

@ It increases the level of
parallelism

<

@ Dense diagonal blocks

@ TRSM are performed
on dense off-diagonal
blocks

o GEMM are performed
between dense
off-diagonal blocks

4

20/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

BLR compression — Symbolic factorization

Approach

@ Large supernodes are
split

@ Large off-diagonal
blocks are low-rank

@ Dense diagonal blocks

@ TRSM are performed
on low-rank
off-diagonal blocks

o GEMM are performed
between low-rank
off-diagonal blocks

General approach
Low-rank into sparse direct solvers PASTIX strategies

When to compress ?

What do we have for now?

@ Methods to compress dense blocks into low-rank form

@ We potentially need to perform operations differently on low-rank
blocks

Several strategies to choose when to compress

@ During the allocation of the matrix

@ When a block has received all its updates
@ When a block was eliminated

21/36 CR15

C approach
Low-rank into sparse direct solvers strategies

Strategy Just-In-Time

@ Eliminate each column block

@ Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
@ Apply a TRSM on LR blocks (cheaper)
© LR update on dense matrices (LR2GE extend-add)

@ Solve triangular systems with low-rank blocks

L

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

22/36 CR15

C approach
Low-rank into sparse direct solvers strategies

Strategy Just-In-Time

@ Eliminate each column block

@ Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
@ Apply a TRSM on LR blocks (cheaper)
© LR update on dense matrices (LR2GE extend-add)

@ Solve triangular systems with low-rank blocks

N

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

22/36 CR15

C approach
Low-rank into sparse direct solvers strategies

Strategy Just-In-Time

@ Eliminate each column block

@ Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
@ Apply a TRSM on LR blocks (cheaper)
© LR update on dense matrices (LR2GE extend-add)

@ Solve triangular systems with low-rank blocks

L1

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

22/36 CR15

C approach
Low-rank into sparse direct solvers strategies

Strategy Just-In-Time

@ Eliminate each column block

@ Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
@ Apply a TRSM on LR blocks (cheaper)
© LR update on dense matrices (LR2GE extend-add)

@ Solve triangular systems with low-rank blocks

ol

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

22/36 CR15

approach
Low-rank into sparse direct solvers strategies

Strategy Just-In-Time

@ Eliminate each column block

@ Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
@ Apply a TRSM on LR blocks (cheaper)
© LR update on dense matrices (LR2GE extend-add)

@ Solve triangular systems with low-rank blocks

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

22/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

Summary of the Just-In-Time strategy

@ The expensive update operation, is faster using LR2GE kernel

@ The formation of the dense update and its application is not
expensive

@ The size of the factors is reduced, as well as the solve cost

<

A limitation of this approach

@ All blocks are allocated in full-rank before being compressed

@ Limiting this constraint may reduce the level of parallelism

inl

i (.

General approach
Low-rank into sparse direct solvers PASTIX strategies

Summary of the Just-In-Time strategy

@ The expensive update operation, is faster using LR2GE kernel

@ The formation of the dense update and its application is not
expensive

@ The size of the factors is reduced, as well as the solve cost

<

A limitation of this approach

@ All blocks are allocated in full-rank before being compressed

@ Limiting this constraint may reduce the level of parallelism

il il

i (. i T

approach

Low-rank into sparse direct solvers

Strategy Minimal Memory

@ Compress large off-diagonal blocks in A (exploiting sparsity)

@ Eliminate each column block

@ Factorize the dense diagonal block
@ Apply a TRSM on LR blocks (cheaper)
© LR update on LR matrices (LR2LR extend-add)

@ Solve triangular systems with LR blocks

I

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

24/36 CR15

approach

Low-rank into sparse direct solvers

Strategy Minimal Memory

@ Compress large off-diagonal blocks in A (exploiting sparsity)

@ Eliminate each column block

@ Factorize the dense diagonal block
@ Apply a TRSM on LR blocks (cheaper)
© LR update on LR matrices (LR2LR extend-add)

@ Solve triangular systems with LR blocks

I

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

24/36 CR15

approach

Low-rank into sparse direct solvers

Strategy Minimal Memory

@ Compress large off-diagonal blocks in A (exploiting sparsity)

@ Eliminate each column block

@ Factorize the dense diagonal block
@ Apply a TRSM on LR blocks (cheaper)
© LR update on LR matrices (LR2LR extend-add)

@ Solve triangular systems with LR blocks

ol

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

24/36 CR15

approach

Low-rank into sparse direct solvers

Strategy Minimal Memory

@ Compress large off-diagonal blocks in A (exploiting sparsity)

@ Eliminate each column block

@ Factorize the dense diagonal block
@ Apply a TRSM on LR blocks (cheaper)
© LR update on LR matrices (LR2LR extend-add)

@ Solve triangular systems with LR blocks

Compression
GETRF (Facto)

TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

24/36 CR15

approach
Low-rank into sparse direct solvers strategies

Solve operation

The solve operation for a generic lower triangular matrix L is applied to
blocks in low-rank forms in our two scenarios.

1: Solve Aj = Li * Uik
2: Solve Akj = ka * Ukj

Steps for (2) — similar for (1)

Q L& = b becomes LU, V! = UpV/{
Q Let us take V[=V}
© We need to solve LU, = U,

The operation is then equivalent to applying a dense solve only to Up,
and the complexity is only ©(m?r,), instead of ©(m?n,) for the full-rank
(dense) representation.

25/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

Extend-add process: C = C — AB*

Product of two low-rank blocks with recompression

o AB' = (ua(vive))ug = ua((vive)up)
@ Recompression

Q T = (vave)

® F—iiv

o

T = vivg = urvy
AB* = (uaur)(vivg)

Application to a dense matrix (LR2GE)

Form explicitly the product

Application to a low-rank matrix (LR2LR)

e ucvE = [uc, uagl([ve, —vag])" (recompression ?)

26/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

Focus on the LR2LR kernel

L

27/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

LR2LR kernel using SVD

A low-rank structure Uc V¢ receives a low-rank contribution Uag Vg

Recompression algorithm
UcVE+UngVig = ([Uc, Uasl) x([Ve, Vag))* -

[|
® QR: [Uc, Uns] = QiR: B
° QR: [V, Vag] = @:R> o
@ SVD: RiR} = uovt P

A= (Qlua) X (sz)t

v

The complexity of this operation depends on the dimensions of C

28/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

LR2LR kernel using SVD

A low-rank structure Uc V¢ receives a low-rank contribution Uag Vg

Recompression algorithm

UcVE+UasVig = ([Uc, Uagl) x ([Ve, VAB])t

@ QR: [Uc, Uag]l = 1 R1

e QR: [Vc, Vag] = QR n
@ SVD: R Rt = uovt g

A= (Qlua) X (sz)t

v

The complexity of this operation depends on the dimensions of C

28/36 CR15

approach
Low-rank into sparse direct solvers A strategies

LR2LR kernel using SVD

A low-rank structure Uc V¢ receives a low-rank contribution Uag Vg

Recompression algorithm

UcVE+UngVig = ([Uc, Uasl) x([Ve, Vag))*

@ QR: [Uc, Uag]l = 1 R1
® QR: [Vc, Vag] = Q:R>
e SVD: R R} = uovt

A= (Qlua) X (sz)t

v

The complexity of this operation depends on the dimensions of C

28/36 CR15

approach

Low-rank into sparse direct solvers AS strategies

LR2LR kernel using RRQR

Taking advantage of orthogonality

o If we handle low-rank matrices of the form uv?, we can ensure that
u matrices are always orthogonal

@ This is true after the first compression (for SVD, apply singular
values on the right)

@ This is conserved by the Solve and the Update operations

@ Warning: we have to store U* in the LU factorization to ensure
orthogonality

Maintaining orthogonality by enlarging an existing basis

@ QR or partialQR
o Modified Gram-Schmidt

29/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

Extend-add: RRQR Recompression

A low-rank structure u;v{ receives a low-rank contribution wyv4.
uy and wp are orthogonal matrices

Algorithm

A= ulvlt + u2v2t = ([Ul, Ug]) X ([Vl, Vz])t

Orthogonalize up with respect to uy :
Ui = uy — u(uiwp)
Form new orthogonal basis, and normalize each column :
I utup
o] = [5] % (%

Apply a RRQR on :

(o “4) x (v’

30/36 CR15

General approach
Low-rank into sparse direct solvers PASTIX strategies

Experimental setup

Machine: 2 INTEL Xeon E5 — 2680v3 at 2.50 GHz
e 128 GB
@ 24 threads

@ Parallelism is obtained following PASTIX static scheduling for
multi-threaded architectures

Entry parameters

@ Tolerance 7: absolute parameter (normalized for each block)

@ Compression method is RRQR

@ Blocking sizes: between 128 and 256 in following experiments

31/36 CR15

approach
Low-rank into sparse direct solvers A strategies

Performance of RRQR/Just-In-Time wrt full-rank version

1.4} B
o
£ 12l f
©
¥
Q
g 1.0 ‘E."
= -} ®
~ 0.8} 3 b S w
= S b & g
2 7 — P &
Boe 2 8 -
E 3 <
Hoo4f & i
0.2 B
0.0 . L.
lap120 atmosmodj audi Geol438 Hook Serena

32/36 CR15

Low-rank into sparse direct solvers

Performance of RRQR/Just-In-Time wrt full-rank version

L6f |- r=10" EEE r=10° [N T=10*12| .
1.4+ g
w
a“ 1.2 i = B
~ 5]
- .
g g = 5 =
5) & o)
- a0
> N N =
) ~
-
m
[+
E
3]

lap120 atmosmodj audi Geol438 Hook Serena

32/36 CR15

General approach
Low-rank into sparse direct solvers ASTIX strategies

Behavior of RRQR/Minimal Memory wrt full-rank version

- =10

- r=10° . =10

Performance

@ Increase by a factor of
1.9 for r =10"8

@ Better for a lower
accuracy

Geold3s. Hook

- =10 Er=10° =10

Memory peak

@ Reduction by a factor
of 1.7 for r = 1078

@ Close to the results
obtained using SVD

Memory BLR / Me

Geold3s Hook Serena

33/36 CR15

eral approach
Low-rank into sparse direct solvers PASTIX strategies

Summary

A 3303 = 36 M unknowns Laplacian has been solved with 7 = 10~* while
it was restricted to 2203 = 8M using the full-rank version

Memory consumption

@ Minimal Memory strategy really saves memory

@ Just-In-Time strategy reduces the size of L’ factors, but supernodes
are allocated dense at the beginning: no gain in pure right-looking

Factorization time

e Minimal Memory strategy requires expensive extend-add algorithms
to update (recompress) low-rank structures with the LR2LR kernel

@ Just-In-Time strategy continues to apply dense update at a smaller
cost through the LR2GE kernel

34/36 CR15

Homework due on January 9th

Outline

@ Homework due on January 9th

35/36 CR15

Homework due on January 9th

What is asked 7

Compute the dense Block Low-Rank complexity (memory and time) of
an n x n matrix when using updates on dense matrices (Just-In-Time).

@ The rank is in ©(n%)

@ The block size is n*, there are n'=* blocks

@ Diagonal blocks are dense

@ There are ©(1) full-rank blocks in each column

Objectives: 1) compute the complexity (memory and time) depending on
the rank and the block size and 2) compute the optimal block size.
Apply with r = ©(1) and r = ©(n?).

36/36 CR15

	Main Talk
	Context
	Low-rank compression kernels
	Low-rank into sparse direct solvers
	General approach
	PaStiX strategies

	Homework due on January 9th

