
Low-Rank Compression in Sparse direct
solvers

Grégoire Pichon, Bora Uçar & Frédéric Vivien

CNRS, INRIA, Université Lyon 1 & ENS Lyon

CR15: December 2022
gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

1/36 CR15

gpichon.gitlabpages.inria.fr/m2if-numerical_algorithms/

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Outline

1 Context

2 Low-rank compression kernels

3 Low-rank into sparse direct solvers
General approach
PaStiX strategies

4 Homework due on January 9th

2/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Context

Sparse direct solvers

Very robust wrt other approaches

High time and memory complexities

Using efficient BLAS Level 3 kernels

2D 3D

σ = 1
2 σ = 2

3

OPC NNZ OPC NNZ

Θ(n
3
2) Θ(n ln(n)) Θ(n2) Θ(n

4
3)

3/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Block Symbolic Factorization

General approach

1 Build a partition with the nested dissection process

2 Compress information on data blocks

3 Compute the block elimination tree using the block quotient graph

7

3 6

1 4

2 5

1 2 21 11 12

3 4 22 13 14

9 10 23 19 20

5 6 24 15 16

7 8 25 17 18

Adjacency graph (G).

1 4

3 7 6

2 5

Quotient graph (G∗/P)
= (G/P)∗

7

3

1 2

6

4 5

Elimination tree (T).

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1

1 1

1 1

1 1

1 1

Factorized matrix (L).

1

2

3

4

5

6

7

4/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Block Numerical Factorization

Algorithm to eliminate the k th supernode

1 Factorize the diagonal block (POTRF/GETRF)

2 Solve off-diagonal blocks in the current supernode (TRSM)

3 Update the trailing matrix with the supernode contribution (GEMM)

5/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Block LU Factorization (dense)

Algorithm 1 LU Factorization

1: for k = 1 to n do
2: Factorize Akk = LkkUkk

3: for i = k + 1 to n do
4: Solve Aik = Lik ∗ Ukk

5: for j = k + 1 to n do
6: Solve Akj = Lkk ∗ Ukj

7: for i = k + 1 to n do
8: for j = k + 1 to n do
9: Aij = Aij − Lik ∗ Ukj

6/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Low-rank compression

Figure: Original picture
of size 500× 500

Figure: 4% of original
storage cost

Figure: 20% of original
storage cost

7/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Objectives

Reduce the complexity

Replace dense blocks by low-rank blocks

Adapt underlying kernels

Similar properties

Keep the same level of parallelism

Use efficient underlying kernels

8/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Outline

1 Context

2 Low-rank compression kernels

3 Low-rank into sparse direct solvers
General approach
PaStiX strategies

4 Homework due on January 9th

9/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Low-rank compression

M

=

U

×
V t

M ∈ Rn×n

U ,V ∈ Rn×r

Storage in 2nr instead of n2

Figure: Original picture,
n = 500

Figure: r = 10, 4% of
original storage

Figure: r = 50, 20% of
original storage

10/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Rank definitions (1/2)

Rank

The rank k of a matrix A is defined as the smallest integer such that
there exist matrices U and V of size n × k with A = UV t

Numerical rank

The numerical rank kε of a matrix A at accuracy ε is defined as the
smallest integer such that there exists a matrix Aε of rank kε with
||A− Aε|| ≤ ε

11/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Rank definitions (2/2)

Eckart-Young theorem

Let UΣV t be the SVD decomposition of A and σi = Σi,i be its singular

values. Then, Â = U1:n,1:kΣ1:kV
t
1:n,1:k is the optimal rank-k

approximation of A and ||A− Â||2 = σk+1

Low-rank matrix

A is said to be low-rank (for a given accuracy ε) if its numerical rank kε
is small enough such that its rank-kε approximation requires less storage
than the full-rank matrix A, i.e., if kε(m + n) ≤ mn

12/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Singular Value Decomposition (Figure from Wikipedia)

Idea

Image of the unit sphere

The singular values can be seen as the magnitude of the semiaxis of
an n-dimensional ellipsoid

Unique decomposition

The smallest singular values represent less important data

13/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

QR Factorization (1/2)

Idea

For rectangular matrices

A = QR, A of size m × n, Q of size m ×m, R of size m × n

Q is orthogonal, R is upper triangular

Reduced QR

If the matrix is not full-rank, some columns of R will be made of
zeroes

Can be used to compress a matrix

14/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

QR Factorization (2/2)

How to build it ?

Gram-Schmidt Orthogonalization

Using Givens rotations

Using reflections with Householder matrices

Ideas behind Householder matrices

Cancel elements below the diagonal in R

First step where x is the first column of A
1 e1 = (1, 0, . . . , 0)t

2 u = x − ||x ||e1 (or +||x || if x1 < 0)
3 v = u

||u||
4 Q1 = I − 2vv t

5 In Q1A, only the first element of the first column is non-zero

15/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Rank-Revealing QR Factorization

Algorithm 2 QR with Column Pivoting: [Q,R,P] = QRCP(A)

for j = 1, 2, ...,min(m, n) do

pj = maxl=j−1,...,n(||A(j−1)
:;l ||2) . Find the pivot

A(j−1) = A(j−1)pj . Apply the pivot
H(j) = I − yjτjy

T
j . Compute the Householder reflection

A(j) = H(j)A(j−1) . Update the trailing matrix

In practice, stop when the norm of the trailing submatrix is small enough

16/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Compression kernels

Kernel Complexity

Singular Value Decomposition (SVD) Θ(mn2)
Rank-Revealing QR (RRQR) Θ(mnr)
RRQR with randomization Θ(mnr)
ACA, BDLR, CUR Θ((m + n)r)

Properties

SVD provides the best ranks at a given accuracy with ||.||2
RRQR keeps a control of accuracy, but efficiency is poor due to
pivoting

Randomization techniques are suitable to perform a rank-r
approximation but may be costly for computing an accurate
representation

The accuracy of ACA/BDLR/CUR is problem dependent

17/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Compression formats for dense matrices

I1

I2

I3

I4

I1 I2 I3 I4

Figure: BLR clustering

I2
11

I2
12

I2
21

I2
22

I2
11

I2
12

I2
21

I2
22

I1
1

I1
2

I1
1 I1

2

Figure: HODLR clustering

Block-admissibility Partitioning
Flat Hierarchical

Without nested bases With nested bases

Weak
BLR

HODLR HSS
Strong H H2

18/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Outline

1 Context

2 Low-rank compression kernels

3 Low-rank into sparse direct solvers
General approach
PaStiX strategies

4 Homework due on January 9th

19/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

BLR compression – Symbolic factorization

Approach

Large supernodes are
split

It increases the level of
parallelism

Operations

Dense diagonal blocks

TRSM are performed
on dense off-diagonal
blocks

GEMM are performed
between dense
off-diagonal blocks

20/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

BLR compression – Symbolic factorization

Approach

Large supernodes are
split

Large off-diagonal
blocks are low-rank

Operations

Dense diagonal blocks

TRSM are performed
on low-rank
off-diagonal blocks

GEMM are performed
between low-rank
off-diagonal blocks

20/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

When to compress ?

What do we have for now?

Methods to compress dense blocks into low-rank form

We potentially need to perform operations differently on low-rank
blocks

Several strategies to choose when to compress

During the allocation of the matrix

When a block has received all its updates

When a block was eliminated

21/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Just-In-Time

Compress L

1 Eliminate each column block
1 Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on dense matrices (LR2GE extend-add)

2 Solve triangular systems with low-rank blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,1)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)(3,3)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)

(3,3)

(2,3)(3,2)

(3,3)

22/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Just-In-Time

Compress L

1 Eliminate each column block
1 Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on dense matrices (LR2GE extend-add)

2 Solve triangular systems with low-rank blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,1)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)(3,3)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)

(3,3)

(2,3)(3,2)

(3,3)

22/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Just-In-Time

Compress L

1 Eliminate each column block
1 Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on dense matrices (LR2GE extend-add)

2 Solve triangular systems with low-rank blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,1)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)(3,3)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)

(3,3)

(2,3)(3,2)

(3,3)

22/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Just-In-Time

Compress L

1 Eliminate each column block
1 Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on dense matrices (LR2GE extend-add)

2 Solve triangular systems with low-rank blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,1)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)(3,3)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)

(3,3)

(2,3)(3,2)

(3,3)

22/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Just-In-Time

Compress L

1 Eliminate each column block
1 Factorize the dense diagonal block

Compress off-diagonal blocks belonging to the supernode
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on dense matrices (LR2GE extend-add)

2 Solve triangular systems with low-rank blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,1)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)(3,3)

(1,2)(1,3) (2,1)(3,1)

(2,2)(3,2) (2,3)

(3,3)

(2,3)(3,2)

(3,3)

22/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Summary of the Just-In-Time strategy

Advantages

The expensive update operation, is faster using LR2GE kernel

The formation of the dense update and its application is not
expensive

The size of the factors is reduced, as well as the solve cost

A limitation of this approach

All blocks are allocated in full-rank before being compressed

Limiting this constraint may reduce the level of parallelism

Just-In-Time 23/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Summary of the Just-In-Time strategy

Advantages

The expensive update operation, is faster using LR2GE kernel

The formation of the dense update and its application is not
expensive

The size of the factors is reduced, as well as the solve cost

A limitation of this approach

All blocks are allocated in full-rank before being compressed

Limiting this constraint may reduce the level of parallelism

Just-In-Time Minimal Memory23/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Minimal Memory

Compress A

1 Compress large off-diagonal blocks in A (exploiting sparsity)
2 Eliminate each column block

1 Factorize the dense diagonal block
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on LR matrices (LR2LR extend-add)

3 Solve triangular systems with LR blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,2)

(1,2)

(3,2)(2,2)

(1,3)

(1,3)

(2,3) (3,3)

(2,1)

(2,1)

(3,1)

(3,1)

(2,3)

(2,3)

(3,2)

(3,2)

(1,1)

(2,2)

(3,3)

(3,3)

24/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Minimal Memory

Compress A

1 Compress large off-diagonal blocks in A (exploiting sparsity)
2 Eliminate each column block

1 Factorize the dense diagonal block
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on LR matrices (LR2LR extend-add)

3 Solve triangular systems with LR blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,2)

(1,2)

(3,2)(2,2)

(1,3)

(1,3)

(2,3) (3,3)

(2,1)

(2,1)

(3,1)

(3,1)

(2,3)

(2,3)

(3,2)

(3,2)

(1,1)

(2,2)

(3,3)

(3,3)

24/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Minimal Memory

Compress A

1 Compress large off-diagonal blocks in A (exploiting sparsity)
2 Eliminate each column block

1 Factorize the dense diagonal block
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on LR matrices (LR2LR extend-add)

3 Solve triangular systems with LR blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,2)

(1,2)

(3,2)(2,2)

(1,3)

(1,3)

(2,3) (3,3)

(2,1)

(2,1)

(3,1)

(3,1)

(2,3)

(2,3)

(3,2)

(3,2)

(1,1)

(2,2)

(3,3)

(3,3)

24/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Strategy Minimal Memory

Compress A

1 Compress large off-diagonal blocks in A (exploiting sparsity)
2 Eliminate each column block

1 Factorize the dense diagonal block
2 Apply a TRSM on LR blocks (cheaper)
3 LR update on LR matrices (LR2LR extend-add)

3 Solve triangular systems with LR blocks

Compression
GETRF (Facto)
TRSM (Solve)
LR2LR (Update)
LR2GE (Update)

(1,2)

(1,2)

(3,2)(2,2)

(1,3)

(1,3)

(2,3) (3,3)

(2,1)

(2,1)

(3,1)

(3,1)

(2,3)

(2,3)

(3,2)

(3,2)

(1,1)

(2,2)

(3,3)

(3,3)

24/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Solve operation

The solve operation for a generic lower triangular matrix L is applied to
blocks in low-rank forms in our two scenarios.

1: Solve Aik = Lik ∗ Ukk

2: Solve Akj = Lkk ∗ Ukj

Steps for (2) – similar for (1)

1 Lx̂ = b̂ becomes LUxV
t
x = UbV

t
b

2 Let us take V t
x = V t

b

3 We need to solve LUx = Ub

The operation is then equivalent to applying a dense solve only to Ub,
and the complexity is only Θ(m2

Lrx), instead of Θ(m2
LnL) for the full-rank

(dense) representation.

25/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Extend-add process: C = C − AB t

Product of two low-rank blocks with recompression

ÂB̂ t = (uA(v t
AvB))utB = uA((v t

AvB)utB)

Recompression
1 T = (v t

AvB)

2 T̂ = v̂ t
AvB = uT v

t
T

3 ÂB̂ t = (uAuT)(v t
T v

t
B)

Application to a dense matrix (LR2GE)

Form explicitly the product

Application to a low-rank matrix (LR2LR)

uC ′v t
C ′ = [uC , uAB]([vC ,−vAB])t (recompression ?)

26/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Focus on the LR2LR kernel

27/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

LR2LR kernel using SVD

A low-rank structure UCV
t
C receives a low-rank contribution UABV

t
AB

Recompression algorithm

UCV
t
C+UABV

t
AB =

(
[UC ,UAB]

)
×
(
[VC ,VAB]

)t
QR: [UC ,UAB] = Q1R1

QR: [VC ,VAB] = Q2R2

SVD: R1R
t
2 = uσv t

A =
(
Q1uσ

)
×
(
Q2v

)t

UC

rC

VC

+ UAB

rAB

VAB

The complexity of this operation depends on the dimensions of C

28/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

LR2LR kernel using SVD

A low-rank structure UCV
t
C receives a low-rank contribution UABV

t
AB

Recompression algorithm

UCV
t
C+UABV

t
AB =

(
[UC ,UAB]

)
×
(
[VC ,VAB]

)t
QR: [UC ,UAB] = Q1R1

QR: [VC ,VAB] = Q2R2

SVD: R1R
t
2 = uσv t

A =
(
Q1uσ

)
×
(
Q2v

)t

UC UAB

rC + rAB

0

0

VC

VAB0 0

The complexity of this operation depends on the dimensions of C

28/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

LR2LR kernel using SVD

A low-rank structure UCV
t
C receives a low-rank contribution UABV

t
AB

Recompression algorithm

UCV
t
C+UABV

t
AB =

(
[UC ,UAB]

)
×
(
[VC ,VAB]

)t
QR: [UC ,UAB] = Q1R1

QR: [VC ,VAB] = Q2R2

SVD: R1R
t
2 = uσv t

A =
(
Q1uσ

)
×
(
Q2v

)t
rC + rAB

r∗C

The complexity of this operation depends on the dimensions of C

28/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

LR2LR kernel using RRQR

Taking advantage of orthogonality

If we handle low-rank matrices of the form uv t , we can ensure that
u matrices are always orthogonal

This is true after the first compression (for SVD, apply singular
values on the right)

This is conserved by the Solve and the Update operations

Warning: we have to store U t in the LU factorization to ensure
orthogonality

Maintaining orthogonality by enlarging an existing basis

QR or partialQR

Modified Gram-Schmidt

29/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Extend-add: RRQR Recompression

A low-rank structure u1v
t
1 receives a low-rank contribution u2v

t
2 .

u1 and u2 are orthogonal matrices

Algorithm

A = u1v
t
1 + u2v

t
2 =

(
[u1, u2]

)
×
(
[v1, v2]

)t
Orthogonalize u2 with respect to u1 :

u∗2 = u2 − u1(ut1u2)

Form new orthogonal basis, and normalize each column :

[u1, u2] = [u1, u
∗
2]×

(
I ut1u2

0 I

)
Apply a RRQR on : (

I ut1u2

0 I

)
×
(
[v1, v2]

)t
30/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Experimental setup

Machine: 2 Intel Xeon E5− 2680v3 at 2.50 GHz

128 GB

24 threads

Parallelism is obtained following PaStiX static scheduling for
multi-threaded architectures

Entry parameters

Tolerance τ : absolute parameter (normalized for each block)

Compression method is RRQR

Blocking sizes: between 128 and 256 in following experiments

31/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Performance of RRQR/Just-In-Time wrt full-rank version

lap120 atmosmodj audi Geo1438 Hook Serena
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
B

L
R

 /
 T

im
e

P
aS

ti
X

6.
1e

-1
0

6.
5e

-1
0

2
.4

e-
1
0

1.
4e

-0
8

3.
7e

-1
0

1
.9

e-
0
8

τ =10−8

32/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Performance of RRQR/Just-In-Time wrt full-rank version

lap120 atmosmodj audi Geo1438 Hook Serena
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
B

L
R

 /
 T

im
e

P
aS

ti
X

1.
0e

-0
5

6.
1e

-1
0

2.
3e

-1
4

1
.1

e-
0
5

6.
5e

-1
0

1.
6
e-

1
4

2.
6e

-0
4 2

.4
e-

1
0 2
.1

e-
1
5

6
.9

e-
0
5

1.
4e

-0
8

9
.1

e-
1
3

4.
2e

-0
4 3.
7e

-1
0

7
.4

e-
1
5

5
.7

e-
05 1

.9
e-

0
8 1
.8

e-
1
2

τ =10−4 τ =10−8 τ =10−12

32/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Behavior of RRQR/Minimal Memory wrt full-rank version

lap120 atmosmodj audi Geo1438 Hook Serena
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
im

e
B

L
R

 /
 T

im
e

P
aS

ti
X

τ =10−4 τ =10−8 τ =10−12

lap120 atmosmodj audi Geo1438 Hook Serena
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
em

o
ry

 B
L
R

 /
 M

em
or

y
 P

aS
ti

X

τ =10−4 τ =10−8 τ =10−12

Performance

Increase by a factor of
1.9 for τ = 10−8

Better for a lower
accuracy

Memory peak

Reduction by a factor
of 1.7 for τ = 10−8

Close to the results
obtained using SVD

33/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

General approach
PaStiX strategies

Summary

A 3303 = 36M unknowns Laplacian has been solved with τ = 10−4 while
it was restricted to 2203 = 8M using the full-rank version

Memory consumption

Minimal Memory strategy really saves memory

Just-In-Time strategy reduces the size of L’ factors, but supernodes
are allocated dense at the beginning: no gain in pure right-looking

Factorization time

Minimal Memory strategy requires expensive extend-add algorithms
to update (recompress) low-rank structures with the LR2LR kernel

Just-In-Time strategy continues to apply dense update at a smaller
cost through the LR2GE kernel

34/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

Outline

1 Context

2 Low-rank compression kernels

3 Low-rank into sparse direct solvers
General approach
PaStiX strategies

4 Homework due on January 9th

35/36 CR15

Context
Low-rank compression kernels

Low-rank into sparse direct solvers
Homework due on January 9th

What is asked ?

Compute the dense Block Low-Rank complexity (memory and time) of
an n × n matrix when using updates on dense matrices (Just-In-Time).

Assumptions

The rank is in Θ(nα)

The block size is nx , there are n1−x blocks

Diagonal blocks are dense

There are Θ(1) full-rank blocks in each column

Objectives: 1) compute the complexity (memory and time) depending on
the rank and the block size and 2) compute the optimal block size.

Apply with r = Θ(1) and r = Θ(n
1
2).

36/36 CR15

	Main Talk
	Context
	Low-rank compression kernels
	Low-rank into sparse direct solvers
	General approach
	PaStiX strategies

	Homework due on January 9th

